Adsorption

, Volume 23, Issue 6, pp 809–819 | Cite as

Adsorption of cesium on bound porous materials containing embedded phosphotungstic acid

  • Iuliia Little
  • Kenneth Seaton
  • Esther Alorkpa
  • Aleksey Vasiliev
Article

Abstract

The adsorption of cesium on mesoporous silica materials containing embedded phosphotungstic acid (PTA) was studied. The materials contained active adsorbent and binders: γ-Al2O3, kaolin, or charcoal. The presence of Keggin units of PTA in the bound materials was confirmed by FT-IR spectroscopy. Among all materials, the formulation with γ-Al2O3 demonstrated the highest porosity and effectiveness in adsorption. Pure PTA/SiO2 contained a significant fraction of small particles between 100 and 300 nm. However, in the alumina-bound material, they were not detected. SEM imaging showed that these particles occupied interparticle space between larger γ-Al2O3 particles. The material was stable up to 540 °C. In most materials, the adsorption of cesium decreased with increase of the binder contents but not proportionally. The adsorption capacity of all materials depended on the concentration of cesium in the solutions. Maximum adsorption was achieved after 1 h. The adsorption of cesium is controlled by intraparticle diffusion while its rate can be described by the pseudo-second-order model.

Keywords

Cesium Adsorption Phosphotunstic acid Silica gel γ-Alumina 

Notes

Acknowledgements

This research was sponsored by NATO’s Emerging Security Challenges Division in the framework of the Science for Peace and Security Programme (Grant SfP 984639). We thank Prof. F. Hossler for recording SEM images, and Prof. M. Roginskaya for assistance in the manuscript preparation.

References

  1. Adetola, O., Little, I., Mohseni, R., Molodyi, D., Bohvan, S., Golovko, L., Vasiliev, A.: Synthesis of mesoporous silica gels with embedded heteropolyacids. J. Sol Gel Sci. Technol. 81, 205–213 (2017)CrossRefGoogle Scholar
  2. Awual, M.R., Suzuki, S., Taguchi, T., Shiwaku, H., Okamoto, Y., Yaita, T.: Radioactive cesium removal from nuclear wastewater by novel inorganic and conjugate adsorbents. Chem. Eng. J. 242, 127–135 (2014a)CrossRefGoogle Scholar
  3. Awual, M.R., Yaita, T., Taguchi, T., Shiwaku, H., Suzuki, S., Okamoto, Y.: Selective cesium removal from radioactive liquid waste by crown ether immobilized new class conjugate adsorbent. J. Hazard. Mater. 278, 227–235 (2014b)CrossRefGoogle Scholar
  4. Banerjee, S., Kar, K.K.: Aluminum-substituted phosphotungstic acid/sulfonated poly ether ether ketone nanocomposite membrane with reduced leaching and improved proton conductivity. High Perform. Polym. 28, 1043–1058 (2016)CrossRefGoogle Scholar
  5. Bascetin, E., Haznedaroglu, H., Erkol, A.Y.: The adsorption behavior of cesium on silica gel. Appl. Radiat. Isot. 59, 5–9 (2003)CrossRefGoogle Scholar
  6. Bostick, B.C., Vairavamurthy, M.A., Karthikeyan, K.G., Chorover, J.: Cesium adsorption on clay minerals: an EXAFS spectroscopic investigation. Environ. Sci. Technol. 36, 2670–2676 (2002)CrossRefGoogle Scholar
  7. Chen, Z., Wun, Y., Wei, Y.: The effect of temperatures and γ-ray irradiation on silica-based calix[4]arene-R14 adsorbent modified with surfactants for the adsorption of cesium from nuclear waste solution. Radiat. Phys. Chem. 103, 222–226 (2014)CrossRefGoogle Scholar
  8. Chen, G.-R., Chang, Y.-R., Liu, X., Kawamoto, T., Tanaka, H., Parajulii, D., Chen, M.-L., Lo, Y.-K., Lei, Z., Lee, D.-J.: Prussian blue non-woven filter for cesium removal from drinking water. Separ. Purif. Technol. 153, 37–42 (2015)CrossRefGoogle Scholar
  9. Cornell, R.M.: Adsorption of cesium on minerals: a review. J. Radioanal. Nucl. Chem. 171, 483–500 (1993)CrossRefGoogle Scholar
  10. Du, Z., Jia, M., Wang, X.: Cesium removal from solution using PAN-based potassium nickel hexacyanoferrate(II) composite spheres. J. Radioanal. Nucl. Chem. 298, 167–177 (2013)CrossRefGoogle Scholar
  11. Fujimura, S., Muramatsu, Y., Ohno, T., Saitou, M., Suzuki, Y., Kobayashi, T., Yoshioka, K., Ueda, Y.: Accumulation of 137Cs by rice grown in four types of soil contaminated by the Fukushima Dai-ichi nuclear power plant accident in 2011 and 2012. J. Environ. Radioact. 140, 59–64 (2015)CrossRefGoogle Scholar
  12. Fujita, H., Miyajima, R., Sakoda, A.: Limitation of adsorptive penetration of cesium into prussian blue crystallite. Adsorption. 21, 185–204 (2015)CrossRefGoogle Scholar
  13. Han, F., Zhang, G.-H., Gu, P.: Removal of cesium from simulated liquid waste with countercurrent two-stage adsorption followed by microfiltration. J. Hazard. Mater. 225–226, 107–113 (2012)CrossRefGoogle Scholar
  14. Kamaraj, R., Vasudevan, S.: Evaluation of electrocoagulation process for the removal of strontium and cesium from aqueous solution. Chem. Eng. Res. Des. 93, 522–530 (2015)CrossRefGoogle Scholar
  15. Khandaker, S., Kuba, T., Kamida, S., Uchikawa, Y.: Adsorption of cesium from aqueous solution by raw and concentrated nitric acid–modified bamboo charcoal. J. Environ. Chem. Eng. 5, 1456–1464 (2017)CrossRefGoogle Scholar
  16. Kuhn, D.D., Young, T.C.: Photolytic degradation of hexacyanoferrate(II) in aqueous media: the determination of the degradation kinetics. Chemosphere. 60, 1222–1230 (2005)CrossRefGoogle Scholar
  17. Liu, X., Chen, G.-R., Lee, D.-J., Kawamoto, T., Tanaka, H., Chen, M.-L., Luo, Y.-K.: Adsorption removal of cesium from drinking waters: a mini review on use of biosorbents and other adsorbents. Bioresour. Technol. 160, 142–149 (2014)CrossRefGoogle Scholar
  18. Marosi, L., Platero, E.E., Cifre, J., Arean, C.O.: Thermal dehydration of H3 + xPVxM12–xO40·yH2O Keggin type heteropolyacids; formation, thermal stability and structure of the anhydrous acids H3PM12O40, of the corresponding anhydrides PM12O38.5 and of a novel trihydrate H3PW12O40·3H2O. J. Mater. Chem. 10, 1949–1955 (2000)CrossRefGoogle Scholar
  19. Moffat, J.B.: Metal–oxygen clusters: the surface and catalytic properties of heteropoly oxometalates. Springer, New York (2001)Google Scholar
  20. Mohana Rao, K., Gobetto, R., Iannibello, A., Zecchina, A.: Solid state NMR and IR studies of phosphomolybdenum and phosphotungsten heteropoly acids supported on SiO2, γ-A12O3, and SiO2–A12O3. J. Catal. 119, 512–516 (1989)CrossRefGoogle Scholar
  21. Niedree, B., Berns, A.E., Vereecken, H., Burauel, P.: Do Chernobyl-like contamination with 137Cs and 90Sr affect the microbial community, the fungal biomass and the composition of soil organic matter in soil? J. Environ. Radioact. 118, 21–29 (2013)CrossRefGoogle Scholar
  22. Ochiai, S., Ueda, S., Hasegawa, H., Kakiuchi, H., Akata, N., Ohtsuka, Y., Hisamatsu, S.: Effects of radiocesium inventory on 137Cs concentrations in river waters of Fukushima, Japan, under base-flow conditions. J. Environ. Radioact. 144, 86–95 (2015)CrossRefGoogle Scholar
  23. Orth, R.J., Brooks, K.P., Kurath, D.E.: Review and assessment of technologies for the separation of cesium from acidic media. Pacific Northwest Laboratory, Richland (1994)Google Scholar
  24. Park, Y., Lee, Y.-C., Shin, W.S., Choi, S.-J.: Removal of cobalt, strontium and cesium from radioactive laundry wastewater by ammonium molybdophosphate–polyacrylonitrile (AMP–PAN). Chem. Eng. J. 162, 685–695 (2010)CrossRefGoogle Scholar
  25. Park, Y., Shin, W.S., Choi, S.-J.: Ammonium salt of heteropoly acid immobilized on mesoporous silica (SBA-15): an efficient ion exchanger for cesium ion. Chem. Eng. J. 220, 204–213 (2013)CrossRefGoogle Scholar
  26. Saito, T., Makino, H., Tanaka, S.: Geochemical and grain-size distribution of radioactive and stable cesium in Fukushima soils: implications for their long-term behavior. J. Environ. Radioact. 138, 11–18 (2014)CrossRefGoogle Scholar
  27. Sangvanich, T., Sukwarotwat, V., Wiacek, R.J., Grudzien, R.M., Fryxell, G.E., Shane Addleman, R., Timchalk, C., Yantasee, W.: Selective capture of cesium and thallium from natural waters and simulated wastes with copper ferrocyanide functionalized mesoporous silica. J. Hazard. Mater. 182, 225–231 (2010)CrossRefGoogle Scholar
  28. Satyanarayana, J., Reddy, V.N., Murty, G.S., Dash, A.: Synthesis and ion-exchange properties of zirconium molybdoarsenate (ZrMAs). J. Radioanal. Nucl. Chem. 188, 323–330 (1994)CrossRefGoogle Scholar
  29. Seaton, K., Little, I., Tate, C., Mohseni, R., Roginskaya, M., Povazhniy, V., Vasiliev, A.: Adsorption of cesium on silica gel containing embedded phosphotungstic acid. Microporous Mesoporous Mater. 244, 55–66 (2017)CrossRefGoogle Scholar
  30. Sun, C., Zhang, F., Li, S., Cheng, F.: Synthesis of SBA-15 encapsulated ammonium molybdophosphate using Qaidam natural clay and its use in cesium ion adsorption. RSC Adv. 5, 35453–35460 (2015)CrossRefGoogle Scholar
  31. Tranter, T.J., Vereshchagina, T.A., Utgikar, V.: An inorganic microsphere composite for the selective removal of 137Cesium from acidic nuclear waste solutions. 1: equilibrium capacity and kinetic properties of the sorbent. Solvent Extr. Ion Exc. 27, 199–218 (2009)CrossRefGoogle Scholar
  32. Velasco, H., Cid, A.S., Anjos, R.M., Zamboni, C.B., Rizzotto, M., Valladares, D.L., Juri Ayub, J.: Variability of 137Cs and 40K soil-to-fruit transfer factor in tropical lemon trees during the fruit development period. J. Environ. Radioact. 104, 64–70 (2012)CrossRefGoogle Scholar
  33. Wagh, A.S., Sayenko, S.Y., Shkuropatenko, V.A., Tarasov, R.V., Dykiy, M.P., Svitlychniy, Y.O., Virych, V.D., Ulybkina, E.A.: Experimental study on cesium immobilization in struvite structures. J. Hazard. Mater. 302, 241–249 (2016)CrossRefGoogle Scholar
  34. Zhang, C.-P., Gu, P., Zhao, J., Zhang, D., Deng, Y.: Research on the treatment of liquid waste containing cesium by an adsorption-microfiltration process with potassium zinc hexacyanoferrate. J. Hazard. Mater. 167, 1057–1062 (2009)CrossRefGoogle Scholar
  35. Zhang, H., Zhao, X., Wei, J., Li, F.: Removal of cesium from low-level radioactive wastewaters using magnetic potassium titanium hexacyanoferrate. Chem. Eng. J. 275, 262–270 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of ChemistryEast Tennessee State UniversityJohnson CityUSA

Personalised recommendations