Skip to main content
Log in

Quantitative analysis porous structure of activated carbon with classical density functional theory

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

Towards development of a more reliable theoretical procedure, we apply a modified classical density functional theory for porous analysis on solid heterogeneity. Such novel theoretical procedure has been used to analyze the pore size distribution (PSD) of five activated carbon samples and to predict the adsorption isotherms of these materials. As for the characterization sensitive with the adopted numerical algorithms, we evaluate the representative of the required PSD by three numerical methodologies with their predictive capability. It is notable that P1 method with B-spline function as prior PSD function form is suitable for the pore-size analysis of activated carbon for its smallest average deviation on isotherm fitting and prediction. Moreover, the effect of hypothesis form on solid heterogeneity is also discussed according to its contribution on the accuracy and stability of the numerical procedure. According to the proposed feature pore width range theory, we discuss the relationship between the numerical procedure and the predictive capability of the characterized PSD. With the fluctuated experimental temperature into consideration, we also make predictive calculation on adsorption capacity of activated carbon within certain error range, which is meaningful for the development of predictive functional in PSD model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Dalcín, L., Paz, R., Storti, M., D’Elía, J.: MPI for python: performance improvements and MPI-2 extensions. J. Parallel Distrib. Comput. 68(5), 655–662 (2008)

    Article  Google Scholar 

  • Davies, G., Seaton, N., Vassiliadis, V.: Calculation of pore size distributions of activated carbons from adsorption isotherms. Langmuir 15(23), 8235–8245 (1999)

    Article  CAS  Google Scholar 

  • Do, D.D.: Adsorption analysis: equilibria and kinetics, vol. 2. Imperial College Press, London (1998)

    Google Scholar 

  • Fu, J., Liu, Y., Tian, Y., Wu, J.: Density functional methods for fast screening of metal-organic frameworks for hydrogen storage. J. Phys. Chem. C 119(10), 5374–5385 (2015). doi:10.1021/jp505963m

    Article  CAS  Google Scholar 

  • Gelb, L.D., Gubbins, K.E.: Pore size distributions in porous glasses: a computer simulation study. Langmuir 15(2), 305–308 (1999)

    Article  CAS  Google Scholar 

  • Herdes, C., Forte, E., Jackson, G., Mueller, E.A.: Predicting the adsorption of n-perfluorohexane in BAM-P109 standard activated carbon by molecular simulation using SAFT-gamma Mie coarse-grained force fields. Adsorp. Sci. Technol. 34(1), 64–78 (2016). doi:10.1177/0263617415619528

    Article  CAS  Google Scholar 

  • Ihara, T., Furusato, T., Kameda, S., Kiyan, T., Katsuki, S., Hara, M., Akiyama, H.: Initiation mechanism of a positive streamer in pressurized carbon dioxide up to liquid and supercritical phases with nanosecond pulsed voltages. J. Phys. D: Appl. Phys. 45(7), 75204 (2012). doi:10.1088/0022-3727/45/7/075204

    Article  Google Scholar 

  • Jagiello, J.: Stable numerical solution of the adsorption integral equation using splines. Langmuir 10(8), 2778–2785 (1994). doi:10.1021/la00020a045

    Article  CAS  Google Scholar 

  • Johnson, J., Zollweg, J., Gubbins, K.E.: The Lennard-Jones equation of state revisited. Mol. Phys. 78(3), 591–618 (1993)

    Article  CAS  Google Scholar 

  • Landers, J., Gor, G.Y., Neimark, A.V.: Density functional theory methods for characterization of porous materials. Colloids Surf. A 437, 3–32 (2013). doi:10.1016/j.colsurfa.2013.01.007

    Article  CAS  Google Scholar 

  • Lastoskie, C., Gubbins, K.E., Quirke, N.: Pore size distribution analysis of microporous carbons: a density functional theory approach. J. Phys. Chem. 97(18), 4786–4796 (1993a). doi:10.1021/j100120a035

    Article  CAS  Google Scholar 

  • Lastoskie, C., Gubbins, K.E., Quirke, N.: Pore size heterogeneity and the carbon slit pore: a density functional theory model. Langmuir 9(10), 2693–2702 (1993b). doi:10.1021/la00034a032

    Article  CAS  Google Scholar 

  • Li, Z., Jin, Z., Firoozabadi, A.: Phase behavior and adsorption of pure substances and mixtures and characterization in nanopore structures by density functional theory. SPE J. 19(6), 1096–1109 (2014). doi:10.2118/169819-PA

    Article  Google Scholar 

  • Liu, Y., Liu, H., Hu, Y., Jiang, J.: Density functional theory for adsorption of gas mixtures in metal-organic frameworks. J. Phys. Chem. B 114(8), 2820–2827 (2010). doi:10.1021/jp9104932

    Article  CAS  Google Scholar 

  • Madani, S.H., Diaz, L.H., Biggs, M.J., Pendleton, P.: Uncertainty in pore size distribution derived from adsorption isotherms: II. Adsorption integral approach. Microporous Mesoporous Mater. 214, 217–223 (2015). doi:10.1016/j.micromeso.2015.04.030

    Article  CAS  Google Scholar 

  • Madani, S.H., Hu, C., Silvestre-Albero, A., Biggs, M.J., Rodríguez-Reinoso, F., Pendleton, P.: Pore size distributions derived from adsorption isotherms, immersion calorimetry, and isosteric heats: a comparative study. Carbon 96, 1106–1113 (2016). doi:10.1016/j.carbon.2015.10.072

    Article  CAS  Google Scholar 

  • Mitchell, L.A., Schindler, B.J., Das, G., dos Ramos, M.C., McCabe, C., Cummings, P.T., LeVan, M.D.: Prediction of n-alkane adsorption on activated carbon using the SAFT-FMT-DFT approach. J. Phys. Chem. C 119(3), 1457–1463 (2015). doi:10.1021/jp510515m

    Article  CAS  Google Scholar 

  • Peng, B., Yu, Y: A density functional theory for Lennard-Jones fluids in cylindrical pores and its applications to adsorption of nitrogen on MCM-41 materials. Langmuir 24(21), 12431–12439 (2008a)

    Article  CAS  Google Scholar 

  • Peng, B., Yu, Y.: A density functional theory with a mean-field weight function: applications to surface tension, adsorption, and phase transition of a Lennard-Jones fluid in a slit-like pore. J. Phys. Chem. B 112(48), 15407–15416 (2008b). doi:10.1021/jp805697p

    Article  CAS  Google Scholar 

  • Puziy, A.M., Poddubnaya, O.I., Gawdzik, B., Sobiesiak, M.: Comparison of heterogeneous pore models QSDFT and 2D-NLDFT and computer programs ASiQwin and SAIEUS for calculation of pore size distribution. Adsorption, 22(4–6), 459–464 (2015). doi:10.1007/s10450-015-9704-6

    Google Scholar 

  • Ravikovitch, P.I., Vishnyakov, A., Russo, R., Neimark, A.V.: Unified approach to pore size characterization of microporous carbonaceous materials from N2, Ar, and CO2 adsorption isotherms. Langmuir 16(5), 2311–2320 (2000)

    Article  CAS  Google Scholar 

  • Rosenfeld, Y.: Free energy model for inhomogeneous fluid mixtures: Yukawa-charged hard spheres, general interactions, and plasmas. J. Chem. Phys. 98(10), 8126–8148 (1993)

    Article  CAS  Google Scholar 

  • Rudzinski, W., Everett, D.H.: Adsorption of gases on heterogeneous surfaces. Academic Press Ltd, London (1992)

    Google Scholar 

  • Seaton, N.A., Walton, J.P.R.B., quirke, N.: A new analysis method for the determination of the pore size distribution of porous carbons from nitrogen adsorption measurements. Carbon 27(6), 853–861 (1989). doi:10.1016/0008-6223(89)90035-3

    Article  CAS  Google Scholar 

  • Shao, X., Feng, Z., Xue, R., Ma, C., Wang, W., Peng, X., Cao, D.: Adsorption of CO2, CH4, CO2/N2 and CO2/CH4 in novel activated carbon beads: preparation, measurements and simulation. AIChE J. 57(11), 3042–3051 (2011). doi:10.1002/aic.12515

    Article  CAS  Google Scholar 

  • Shen, G., Lu, X., Ji, X.: Modeling of molecular gas adsorption isotherms on porous materials with hybrid PC-SAFT-DFT. Fluid Phase Equilib. 382, 116–126 (2014). doi:10.1016/j.fluid.2014.09.002

    Article  CAS  Google Scholar 

  • Sitprasert, C., Zhu, Z., Wang, F., Rudolph, V.: A multi-scale approach to the physical adsorption in slit pores. Chem. Eng. Sci. 66(22), 5447–5458 (2011)

    Article  CAS  Google Scholar 

  • Sweatman, M., Quirke, N.: Characterization of porous materials by gas adsorption at ambient temperatures and high pressure. J. Phys. Chem. B 105(7), 1403–1411 (2001). doi:10.1021/jp003308l

    Article  CAS  Google Scholar 

  • Sweatman, M., Quirke, N.: Gas adsorption in active carbons and the slit-pore model 1: pure gas adsorption. J. Phys. Chem. B 109(20), 10381–10388 (2005)

    Article  CAS  Google Scholar 

  • Tang, Y.: First-order mean spherical approximation for inhomogeneous fluids. J. Chem. Phys. 121(21), 10605–10610 (2004)

    Article  CAS  Google Scholar 

  • Thommes, M., Cychosz, K.: Physical adsorption characterization of nanoporous materials: progress and challenges. Adsorption 20(2), 233–250 (2014). doi:10.1007/s10450-014-9606-z

    Article  CAS  Google Scholar 

  • Thommes, M., Kaneko, K., Neimark, A.V., Olivier, J.P., Rodriguez-Reinoso, F., Rouquerol, J., Sing, K.S.W: Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 33(2), 1–19 (2011)

    Google Scholar 

  • Vega, L.F.: Structural characterization of nano and mesoporous materials by molecular simulation. Nanomaterials : design and simulation, vol. 18. Elsevier, Amsterdam (2007)

    Google Scholar 

  • Wang, K., Do, D.D.: Characterizing the micropore size distribution of activated carbon using equilibrium data of many adsorbates at various temperatures. Langmuir 13(23), 6226–6233 (1997)

    Article  CAS  Google Scholar 

  • Wang, G., Tian, Y., Jiang, J., Wu, J.: Multimodels computation for adsorption capacity of activated carbon. Adsorp. Sci. & Technol. 0(0), 0263617417705472 (2017). doi:10.1177/0263617417705472

    Google Scholar 

  • Wu, J.: Density functional theory for chemical engineering: from capillarity to soft materials. AIChE J. 52(3), 1169–1193 (2006). doi:10.1002/aic.10713

    Article  CAS  Google Scholar 

  • You, F.Q., Yu, Y.X., Gao, G.H.: Structures and adsorption of binary hard-core Yukawa mixtures in a slitlike pore: grand canonical Monte Carlo simulation and density-functional study. J. Chem. Phys. 123(11), 10156 (2005)

    Article  Google Scholar 

  • Yu, Y.: A novel weighted density functional theory for adsorption, fluid-solid interfacial tension, and disjoining properties of simple liquid films on planar solid surfaces. J. Chem. Phys. 131(2), 24704 (2009). doi:10.1063/1.3174928

    Article  Google Scholar 

  • Zeng, M., Tang, Y., Mi, J., Zhong, C.: Improved direct correlation function for density functional theory analysis of pore size distributions. J. Phys. Chem. C 113(40), 17428–17436 (2009)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We feel gratitude for Professor Jianzhong Wu, Dr. Jia Fu, Dr. Yun Tian and Dr. Cheng Lian at the University of California, Riverside, United States, with their constructive discussions, isotherm fitting and DFT codes. We also give thanks to both Professor Shicai Liu and Associate Professor Haitao Huang in National Engineering and Technology Research Center of Forest Chemistry Industry, China, for their kindness help in activated carbon samples preparation and characterization. This work is implemented on super computational center of Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, and supported by the National Sci-tech Support Plan (2015BAD21B05).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianchun Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, G., Jiang, J. Quantitative analysis porous structure of activated carbon with classical density functional theory. Adsorption 23, 1023–1031 (2017). https://doi.org/10.1007/s10450-017-9904-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-017-9904-3

Keywords

Navigation