Skip to main content

Comparing multi-column chromatographic processes for purifying monosaccharides part I: A simplified approach

Abstract

This work proposes a methodology for comparing different multi-column chromatographic processes (SMB, ISMB, SSMB) for purifying monosaccharides. The first step of the methodology consists in determining the flow rates associated with the different processes assuming that the columns are infinitely efficient. This allows deriving “idealized” operating conditions. In a second step, using the “idealized” conditions, the behavior of the real systems associated with columns of finite efficiencies are simulated with ChromWorks™ and compared. It is shown that the SMB performs better than single column elution chromatography, and that, for the application selected, ISMB and SSMB are very similar and perform better than SMB.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Abbreviations

\(\text{BV}\) :

Volume normalized by the column volume

\(\bar{K}\) :

Henry’s coefficient

\(m\) :

Ratio of fluid flow rate to solid flowrate (TMB)

N :

Number of plates

\({{P}_{Fru}}\) :

Fructose purification factor

\(Q\) :

Fluid flow rate

\(\bar{Q}\) :

Solid flowrate (TMB)

\({{u}_{e}}\) :

Interstitial fluid velocity

\({{V}_{col}}\) :

Column volume

\({{X}_{Fru}}\) :

Fructose purity

\(\Delta {{t}_{inj}}\) :

Injection time

\(\Delta T\) :

Shift period

\(\Delta V\) :

Volume injected

\({{\varepsilon }_{e}}\) :

Extragranular porosity

\({{\theta }_{Fru}}\) :

Fructose recovery

\({{\Phi }_{Fru}}\) :

Fructose productivity

\({{\Upsilon }_{Fru}}\) :

Specific eluent consumption

eq:

Equilibrium model

ec, tmb, smb, ismb, ssmb:

Refer to chromatographic processes

I,II,III,IV:

Zones in TMB or SMB

E, F, Ext, Raf:

Eluent, Feed, Extract, Raffinate

BV:

Bed volume

ISMB:

Intermittent SMB

SMB:

Simulated moving bed

SSMB:

Sequential SMB

TMB:

True moving Bed

References

  1. Agrawal, G., Kawajiri, Y.: Full superstructure for multiobjective optimization of multicolumn chromatography for ternary separations. Chem. Eng. Technol. 38, 1677–1682 (2015)

    CAS  Article  Google Scholar 

  2. Baudouin, S., Lancrenon, X.: Desugarization of low purity syrups and molasses: the sequential simulated moving bed (SSMB) is a new step of progress in the development of chromatographic separation for two fractions systems. In: CITS Proceedings of the 22nd general assembly of the International Commission on Sugar Technology. pp. 295–302 (2003)

  3. Biressi, G., Ludemann-Hombourger, O., Mazzotti, M., Nicoud, R.-M., Morbidelli, M.: Design and optimisation of a simulated moving bed unit: role of deviations from equilibrium theory. J. Chromatogr. A. 876, 3–15 (2000)

    CAS  Article  Google Scholar 

  4. Carta, G., Mahajan, A.I., Cohen, L.M., Byers, C.H.: Chromatography of reversibly reacting mixtures: mutarotation effects in sugar separations. Chem. Eng. Sci. 47, 1645–1657 (1992)

    CAS  Article  Google Scholar 

  5. Charton, F., Nicoud, R.-M.: Complete design of a simulated moving bed. J. Chromatogr. A. 702, 97–112 (1995)

    CAS  Article  Google Scholar 

  6. Katsuo, S., Mazzotti, M.: Intermittent simulated moving bed chromatography: 1. Design criteria and cyclic steady-state. J. Chromatogr. A. 1217, 1217–1354 (2010a)

    Google Scholar 

  7. Katsuo, S., Mazzotti, M.: Intermittent simulated moving bed chromatography: 2. Separation of Troger’s base enantiomers. J. Chromatogr. A. 1217, 3067–3075 (2010b)

    CAS  Article  Google Scholar 

  8. Mazzotti, M., Storti, G., Morbidelli, M.: Robust design of countercurrent adsorption separation: 3. Nonstoichiometric systems. AIChE J. 42, 2784–2796 (1996)

    CAS  Article  Google Scholar 

  9. Nicoud, R.-M.: The amazing ability of continuous chromatography to adapt to a moving environment. Ind. Eng. Chem. Res. 53, 3755–3765 (2014)

    CAS  Article  Google Scholar 

  10. Nicoud, R.-M.: Chromatographic Processes: modeling, simulation and design. Cambridge University Press, New York (2015)

    Book  Google Scholar 

  11. Ruthven, D.M., Ching, C.B.: Counter-current and simulated counter-current adsorption separation processes. Chem. Eng. Sci. 44, 1011–1038 (1989)

    CAS  Article  Google Scholar 

  12. Sainio, T.: Unified Design of chromatographic processes with timed events: Separation of ternary mixtures. Chem. Eng. Sci. 152, 547–567 (2016)

    CAS  Article  Google Scholar 

  13. Siitonen, J., Sainio, T.: Unified design of chromatographic separation processes. Chem. Eng. Sci. 122, 436–451 (2015)

    CAS  Article  Google Scholar 

  14. Storti, G., Mazzotti, M., Morbidelli, M., Carrà, S.: Robust design of binary countercurrent adsorption separation processes. AIChE J. 39, 471–492 (1993)

    CAS  Article  Google Scholar 

  15. Tanimura, M., Tamura, M., Teshima, T.: Method of chromatographic separation, US Patent No. 5,064,539, 12 Nov 1991

  16. Tanimura, M., Tamura, M., Teshima, T.: Japanese Patent No. B-H07-046097, 1995

  17. Ypso-Facto: Chromworks™, A software for chromatographic separations, http://www.ypsofacto.com/services-chemical-software-chromworks.php.

  18. Zhang, Z., Mazzotti, M., Morbidelli, M.: Continuous chromatographic processes with a small number of columns: Comparison of simulated moving bed with Varicol, PowerFeed, and ModiCon. Korean J. Chem. Eng. 21, 454–464 (2004)

    CAS  Article  Google Scholar 

  19. Zhong, G., Guiochon, G.: Analytical solution for the linear ideal model of simulated moving bed chromatography. Chem. Eng. Sci. 51, 4307–4319 (1996)

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Roger-Marc Nicoud.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

David, L., Yun, J. & Nicoud, RM. Comparing multi-column chromatographic processes for purifying monosaccharides part I: A simplified approach. Adsorption 23, 577–591 (2017). https://doi.org/10.1007/s10450-017-9878-1

Download citation

Keywords

  • Sugars
  • Chromatography
  • Simulation
  • Simulated Moving Bed
  • Ion exchange