Skip to main content

Advertisement

Log in

Functionalization of multi-walled carbon nanotubes with phenylenediamine for enhanced CO2 adsorption

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

The adsorption performance of multi-walled carbon nanotubes (MWCNTs) towards CO2 gas was enhanced by covalently grafting of phenylenediamine (PDA) via an activation-grafting process. Different loading amounts were achieved by changing the activation time and the dosage of activating agent. The so-synthesized adsorbents were characterized by Fourier transform infrared spectroscopy, X-ray diffraction, Thermogravimetry analysis, Transmission electron microscope, Raman spectroscopy and Nitrogen adsorption–desorption analysis. The CO2 adsorption properties were studied via static volumetric method. The results indicated that the modification process did not alter the crystal structure, whilst the quantity of defect sites and amorphous structures increased greatly. Moreover, the average pore size after functionalization increased from 9.68 to 23.80 nm. 0.59 mmol·g−1 of CO2 were captured by aminated MWCNTs at 303.15 K and 200 kPa, while the adsorption capacity of the raw materials was only 0.17 mmol·g−1 under the same conditions. Adsorption–regeneration cycles exhibited the stability of the PDA modified MWCNTs during the prolonged cyclic operations. We found that the adsorption of CO2 on MWCNTs belonged to physical adsorption and the adsorption behavior of CO2 on PDA modified MWCNTs was a chemical adsorption. The effective enhancement of the CO2 capture ability was attributed to the increased number of active sites, which offered stronger interactions with CO2 after PDA grafting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Alesi Jr., W.R., Kitchin, J.R.: Evaluation of a primary amine-functionalized ion-exchange resin for CO2 capture. Ind. Eng. Chem. Res. 51, 6907–6915 (2012)

    Article  CAS  Google Scholar 

  • Alhwaige, A.A., Agag, T., Ishida, H., et al.: Biobased chitosan hybrid aerogels with superior adsorption: role of graphene oxide in CO2 capture. RSC Adv. 3, 16011–16020 (2013)

    Article  CAS  Google Scholar 

  • Armarego, W.L.F., Chai, C.L.L.: Purification of Laboratory Chemicals. Elsevier Science, Amsterdam (2003)

    Google Scholar 

  • Feng, Y.Y., Chu, W., Sun, W.J.: Adsorption characteristics of methane on coal under reservoir temperatures. J. China Coal Soc. 37, 1488–1492 (2012)

    CAS  Google Scholar 

  • Ferrari, A.C., Meyer, J.C., Scardaci, V., et al.: Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401 (2006)

    Article  CAS  Google Scholar 

  • Gao, C., Vo, C.D., Jin, Y.Z., et al.: Multihydroxy polymer-functionalized carbon nanotubes: synthesis, derivatization, and metal loading. Macromolecules 38, 8634–8648 (2005)

    Article  CAS  Google Scholar 

  • Gui, M.M., Yap, Y.X., Chai, S.P., et al.: Multi-walled carbon nanotubes modified with (3-aminopropyl) triethoxysilane for effective carbon dioxide adsorption. Int. J. Greenh. Gas Control 14, 65–73 (2013)

    Article  CAS  Google Scholar 

  • Hoeven, M.: CO2 Emissions from Fuel Combustion Highlights. International Energy Agency, Paris (2013)

    Google Scholar 

  • Houghton, J.T., Ding, Y., Griggs D.J., et al.: Climate change 2001: the Scientific Basis, Contribution of Working Group 1 to the Third Assessment Report of the Intergovernmental Panel on Climate Change (2001)

  • Hu, H.R.: Surface Modification of Carbon Nanotubes for Adsorption of Low-Concentration CO2 from Confined Space. Zhejiang University, Hangzhou (2013)

    Google Scholar 

  • Kalijadis, A.M., Vukčević, M.M., Jovanović, Z.M., et al.: Characterization of surface oxygen groups on different carbon materials by the Boehm method and temperature programmed desorption. J. Serb. Chem. Soc. 76, 757–768 (2011)

    Article  CAS  Google Scholar 

  • Khatri, R.A., Chuang, S.S.C., Soong, Y., et al.: Thermal and chemical stability of regenerable solid amine sorbent for CO2 capture. Energy Fuels 20, 1514–1520 (2006)

    Article  CAS  Google Scholar 

  • Kong, H., Gao, C., Yan, D.: Functionalization of multiwalled carbon nanotubes by atom transfer radical polymerization and defunctionalization of the products. Macromolecules 37, 4022–4030 (2004)

    Article  CAS  Google Scholar 

  • Lee, S.Y., Park, S.J.: A review on solid adsorbents for carbon dioxide capture. J. Ind. Eng. Chem. 23, 1–11 (2015)

    Article  Google Scholar 

  • Lee, J.S., Kim, J.H., Kim, J.T., et al.: Adsorption equilibria of CO2 on zeolite 13X and zeolite X/activated carbon composite. J. Chem. Eng. Data 47, 1237–1242 (2002)

    Article  CAS  Google Scholar 

  • Liu, Y., Ye, Q., Shen, M., et al.: Carbon dioxide capture by functionalized solid amine sorbents with simulated flue gas conditions. Environ. Sci. Technol. 45, 5710–5716 (2011)

    Article  CAS  Google Scholar 

  • Lu, X., Xiao, H.: A review on CO2 sorbents. Rev. Adv. Mater. Sci. 42, 50–57 (2015)

    Google Scholar 

  • Lu, X., Jin, D., Wei, S., et al.: Strategies to enhance CO2 capture and separation based on engineering absorbent materials. J. Mater. Chem. A 23, 12118–12132 (2015)

    Article  Google Scholar 

  • Millward, A.R., Yaghi, O.M.: Metal-organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature. J. Am. Chem. Soc. 127, 17998–17999 (2005)

    Article  CAS  Google Scholar 

  • Na, B.K., Koo, K.K., Eum, H.M., et al.: CO2 recovery from flue gas by PSA process using activated carbon. Korean J. Chem. Eng. 18, 220–227 (2001)

    Article  CAS  Google Scholar 

  • Rochelle, G.T.: Amine scrubbing for CO2 capture. Science 325, 1652–1654 (2009)

    Article  CAS  Google Scholar 

  • Siriwardane, R.V., Shen, M.S., Fisher, E.P., et al.: Adsorption of CO2 on molecular sieves and activated carbon. Energy Fuels 15, 279–284 (2001)

    Article  CAS  Google Scholar 

  • Stangeland, A.: A model for the CO2 capture potential. Int. J. Greenh. Gas Control 1, 418–429 (2007)

    Article  CAS  Google Scholar 

  • Tachikawa, H., Kawabata, H.: Electronic states of defect sites of graphene model compounds: A DFT and direct molecular orbital-molecular dynamics study. J. Phys. Chem. C 113, 7603–7609 (2009)

    Article  CAS  Google Scholar 

  • Tamilarasan, P., Ramaprabhu, S.: Integration of polymerized ionic liquid with graphene for enhanced CO2 adsorption. J. Mater. Chem. A 3, 101–108 (2015)

    Article  CAS  Google Scholar 

  • Thommes, M., Kaneko, K., Neimark, A.V., et al.: Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 87, 1051–1069 (2015)

    Article  CAS  Google Scholar 

  • Tsai, C.L., Chen, C.F.: Characterization of bias-controlled carbon nanotubes. Diam. Relat. Mater. 12, 1615–1620 (2003)

    Article  CAS  Google Scholar 

  • Vuković, G., Marinković, A., Obradović, M., et al.: Synthesis, characterization and cytotoxicity of surface amino-functionalized water-dispersible multi-walled carbon nanotubes. Appl. Surf. Sci. 255, 8067–8075 (2009)

    Article  Google Scholar 

  • Wang, Q., Luo, J., Zhong, Z., et al.: CO2 capture by solid adsorbents and their applications: current status and new trends. Energy Environ. Sci. 4, 42–55 (2011)

    Article  CAS  Google Scholar 

  • Ye, Q., Jiang, J., Wang, C., et al.: Adsorption of low-concentration carbon dioxide on amine-modified carbon nanotubes at ambient temperature. Energy Fuels 26, 2497–2504 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful for the financial support from the National Natural Science Foundation of China (Nos. 21276163, 21576168).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengwei Tang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 6162 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, H., Zhang, T., Yuan, S. et al. Functionalization of multi-walled carbon nanotubes with phenylenediamine for enhanced CO2 adsorption. Adsorption 23, 73–85 (2017). https://doi.org/10.1007/s10450-016-9820-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-016-9820-y

Keywords

Navigation