Skip to main content
Log in

Elaborate control over the morphology and pore structure of porous silicas for VOCs removal with high efficiency and stability

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

Highly ordered hexagonal meso-structured, vesicles, and mesoporous ordered siliceous foams have been elaborately synthesized in weak HCl solution under static conditions without any organic additives by finely tuning reaction pH (3.0–5.0) and/or the amount of adding sodium sulfate (Na2SO4). Lower pH value is favorable for hexagonal structure and higher pH value and Na2SO4 concentration is beneficial for vesicles and foams. Siliceous materials with different morphologies (rod, vesicle and foam), structures (hexagonal, vesicle and foam) and pore sizes were used for volatile organic compounds (VOCs) removal. The adsorption and desorption performance of hexagonal mesostructure (S1), vesicles (S5) and macroporous ordered siliceous (S7) samples were investigated under static (water vapor, n-hexane and 93# gasoline) and dynamic (n-hexane) conditions. Compared with S1, S5, commercial silica gel (SG) and activated carbon (AC), S7 shows higher static adsorption capacity of n-hexane and 93# gasoline, more stable breakthrough time and larger n-hexane adsorption capacity under dynamic adsorption conditions. The designed siliceous materials with high VOCs removal capacity and recyclability show great potential for VOCs controlling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alexandridis, P., Hatton, T.A.: Poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) block-copolymer surfactants in aqueous-solutions and at interfaces - thermodynamics, structure, dynamics, and modeling. Colloids Surf. A 96(1–2), 1–46 (1995). doi:10.1016/0927-7757(94)03028-X

    Article  CAS  Google Scholar 

  • Alexandridis, P., Holzwarth, J.F., Hatton, T.A.: Micellization of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymers in aqueous-solutions—thermodynamics of copolymer association. Macromolecules 27(9), 2414–2425 (1994). doi:10.1021/ma00087a009

    Article  CAS  Google Scholar 

  • Batonneau-Gener, I., Yonli, A., Trouve, A., Mignard, S., Guidotti, M., Sgobba, M.: Tailoring the hydrophobic character of mesoporous silica by silylation for VOC removal. Sep. Sci. Technol. 45(6), 768–775 (2010). doi:10.1080/01496391003609155

    Article  CAS  Google Scholar 

  • Brinker, C.J.: Hydrolysis and condensation of silicates—effects on structure. J. Non-Cryst. Solids 100(1–3), 31–50 (1988). doi:10.1016/0022-3093(88)90005-1

    Article  CAS  Google Scholar 

  • Brosillon, S., Manero, M.H., Foussard, J.N.: Mass transfer in VOC adsorption on zeolite: experimental and theoretical breakthrough curves. Environ. Sci. Technol. 35(17), 3571–3575 (2001). doi:10.1021/es010017x

    Article  CAS  Google Scholar 

  • Chen, S.Y., Cheng, S.: Acid-free synthesis of mesoporous silica using trihlock copolymer as template with the aid of salt and alcohol. Chem. Mater. 19(12), 3041–3051 (2007). doi:10.1021/cm070232y

    Article  CAS  Google Scholar 

  • Choi, B.S., Yi, J.: Simulation and optimization on the regenerative thermal oxidation of volatile organic compounds. Chem. Eng. J. 76(2), 103–114 (2000). doi:10.1016/s1385-8947(99)00118-7

    Article  CAS  Google Scholar 

  • Dou, B., Hu, Q., Li, J., Qiao, S., Hao, Z.: Adsorption performance of VOCs in ordered mesoporous silicas with different pore structures and surface chemistry. J. Hazard. Mater. 186(2–3), 1615–1624 (2011). doi:10.1016/j.jhazmat.2010.12.051

    Article  CAS  Google Scholar 

  • Dwivedi, P., Gaur, V., Sharma, A., Verma, N.: Comparative study of removal of volatile organic compounds by cryogenic condensation and adsorption by activated carbon fiber. Sep. Purif. Technol. 39(1–2), 23–37 (2004). doi:10.1016/j.seppur.2003.12.016

    Article  CAS  Google Scholar 

  • Flanigen, E.M., Bennett, J.M., Grose, R.W., Cohen, J.P., Patton, R.L., Kirchner, R.M., Smith, J.V.: Silicalite, a new hydrophobic crystalline silica molecular-sieve. Nature 271(5645), 512–516 (1978). doi:10.1038/271512a0

    Article  CAS  Google Scholar 

  • Flodstrom, K., Teixeira, C.V., Amenitsch, H., Alfredsson, V., Linden, M.: In situ synchrotron small-angle X-ray scattering/X-ray diffraction study of the formation of SBA-15 mesoporous silica. Langmuir 20(12), 4885–4891 (2004a). doi:10.1021/la049637c

    Article  Google Scholar 

  • Flodstrom, K., Wennerstrom, H., Alfredsson, V.: Mechanism of mesoporous silica formation. A time-resolved NMR and TEM study of silica-block copolymer aggregation. Langmuir 20(3), 680–688 (2004b). doi:10.1021/la030173c

    Article  Google Scholar 

  • Flodstrom, K., Wennerstrom, H., Teixeira, C.V., Amenitsch, H., Linden, M., Alfredsson, V.: Time-resolved in situ studies of the formation of cubic mesoporous silica formed with triblock copolymers. Langmuir 20(23), 10311–10316 (2004c). doi:10.1021/la0482958

    Article  Google Scholar 

  • Golfinopoulos, S.K., Lekkas, T.D., Nikolaou, A.D.: Comparison of methods for determination of volatile organic compounds in drinking water. Chemosphere 45(3), 275–284 (2001). doi:10.1016/s0045-6535(00)00553-1

    Article  CAS  Google Scholar 

  • Guillemot, M., Mijoin, J., Mignard, S., Magnoux, P.: Adsorption of tetrachloroethylene on cationic X and Y zeolites: influence of cation nature and of water vapor. Ind. Eng. Chem. Res. 46(13), 4614–4620 (2007). doi:10.1021/ie0616390

    Article  CAS  Google Scholar 

  • Hartmann, M., Bischof, C.: Mechanical stability of mesoporous molecular sieve MCM-48 studied by adsorption of benzene, n-heptane, and cyclohexane. J. Phys. Chem. B 103(30), 6230–6235 (1999). doi:10.1021/jp991103a

    Article  CAS  Google Scholar 

  • Hiro, K., Renichirou, S.: Foundation and Design of Adsorptions. Chemical Industry Press, Beijing (1983)

    Google Scholar 

  • Hu, Q., Li, J.J., Hao, Z.P., Li, L.D., Qiao, S.Z.: Dynamic adsorption of volatile organic compounds on organofunctionalized SBA-15 materials. Chem. Eng. J. 149(1–3), 281–288 (2009). doi:10.1016/j.cej.2008.11.003

    Article  CAS  Google Scholar 

  • Huang, L., Huang, Q.L., Xiao, H.N., Eic, M.: Effect of cationic template on the adsorption of aromatic compounds in MCM-41. Microporous Mesoporous Mater. 98(1–3), 330–338 (2007). doi:10.1016/j.micromeso.2006.09.032

    Article  CAS  Google Scholar 

  • Khodakov, A.Y., Zholobenko, V.L., Imperor-Clerc, M., Durand, D.: Characterization of the initial stages of SBA-15 synthesis by in situ time-resolved small-angle X-ray scattering. J. Phys. Chem. B 109(48), 22780–22790 (2005). doi:10.1021/jp052786z

    Article  CAS  Google Scholar 

  • Kim, J.M., Han, Y.J., Chmelka, B.F., Stucky, G.D.: One-step synthesis of ordered mesocomposites with non-ionic amphiphilic block copolymers: implications of isoelectric point, hydrolysis rate and fluoride. Chem. Commun. 24, 2437–2438 (2000). doi:10.1039/b005608l

    Article  Google Scholar 

  • Kosuge, K., Kubo, S., Kikukawa, N., Takemori, M.: Effect of pore structure in mesoporous silicas on VOC dynamic adsorption/desorption performance. Langmuir 23(6), 3095–3102 (2007). doi:10.1021/la062616t

    Article  CAS  Google Scholar 

  • Kosuge, K., Sato, T., Kikukawa, N., Takemori, M.: Morphological control of rod- and fiberlike SBA-15 type mesoporous silica using water-soluble sodium silicate. Chem. Mater. 16(5), 899–905 (2004). doi:10.1021/cm030622u

    Article  CAS  Google Scholar 

  • Kubo, S., Kosuge, K.: Salt-induced formation of uniform fiberlike SBA-15 mesoporous silica particles and application to toluene adsorption. Langmuir 23(23), 11761–11768 (2007). doi:10.1021/la701556y

    Article  CAS  Google Scholar 

  • Lai, T.L., Shu, Y.Y., Lin, Y.C., Chen, W.N., Wang, C.B.: Rapid removal of organic template from SBA-15 with microwave assisted extraction. Mater. Lett. 63(20), 1693–1695 (2009). doi:10.1016/j.matlet.2009.05.014

    Article  CAS  Google Scholar 

  • Lee, J.W., Shim, W.G., Moon, H.: Adsorption equilibrium and kinetics for capillary condensation of trichloroethylene on MCM-41 and MCM-48. Microporous Mesoporous Mater. 73(3), 109–119 (2004). doi:10.1016/j.micromeso.2004.04.020

    Article  CAS  Google Scholar 

  • Leontidis, E.: Hofmeister anion effects on surfactant self-assembly and the formation of mesoporous solids. Curr. Opin. Colloid Interface Sci. 7(1–2), 81–91 (2002). doi:10.1016/s1359-0294(02)00010-9

    Article  CAS  Google Scholar 

  • Leson, G., Winer, A.M.: Biofiltration: an innovative air pollution control technology for VOC emissions. J. Air Waste Manag. Assoc. 41(8), 1045–1054 (1991)

    Article  CAS  Google Scholar 

  • Lin, H.P., Wong, S.T., Mou, C.Y., Tang, C.Y.: Extensive void defects in mesoporous aluminosilicate MCM-41. J. Phys. Chem. B 104(38), 8967–8975 (2000). doi:10.1021/jp001569p

    Article  CAS  Google Scholar 

  • Liu, P., Long, C., Li, Q., Qian, H., Li, A., Zhang, Q.: Adsorption of trichloroethylene and benzene vapors onto hypercrosslinked polymeric resin. J. Hazard. Mater. 166(1), 46–51 (2009). doi:10.1016/j.jhazmat.2008.10.124

    Article  CAS  Google Scholar 

  • Liu, S.M., Teo, W.K., Tan, X.Y., Li, K.: Preparation of PDMSvi-Al2O3 composite hollow fibre membranes for VOC recovery from waste gas streams. Sep. Purif. Technol. 46(1–2), 110–117 (2005). doi:10.1016/j.seppur.2005.04.017

    Article  CAS  Google Scholar 

  • Manjare, S.D., Ghoshal, A.K.: Studies on adsorption of ethyl acetate vapor on activated carbon. Ind. Eng. Chem. Res. 45(19), 6563–6569 (2006). doi:10.1021/ie0603060

    Article  CAS  Google Scholar 

  • Martines, M.U., Yeong, E., Persin, M., Larbot, A., Voorhout, W.F., Kubel, C.K.U., Kooyman, P., Prouzet, E.: Hexagonal mesoporous silica nanoparticles with large pores and a hierarchical porosity tested for HPLC. C. R. Chim. 8(3–4), 627–634 (2005). doi:10.1016/j.crci.2004.10.022

    Article  CAS  Google Scholar 

  • Mortensen, K.: Structural studies of aqueous solutions of PEO-PPO-PEO triblock copolymers, their micellar aggregates and mesophases; a small-angle neutron scattering study. J. Phys.-Condensed Matter 8(25A), A103–A124 (1996). doi:10.1088/0953-8984/8/25a/008

    Article  CAS  Google Scholar 

  • Newalkar, B.L., Choudary, N.V., Turaga, U.T., Vijayalakshmi, R.P., Kumar, P., Komarneni, S., Bhat, T.S.G.: Adsorption of light hydrocarbons on HMS type mesoporous silica. Microporous Mesoporous Mater. 65(2–3), 267–276 (2003a). doi:10.1016/j.micromeso.2003.08.008

    Article  CAS  Google Scholar 

  • Newalkar, B.L., Choudary, N.V., Turaga, U.T., Vijayalakshmi, R.P., Kumar, P., Komarneni, S., Bhat, T.S.G.: Potential adsorbent for light hydrocarbon separation: role of SBA-15 framework porosity. Chem. Mater. 15(7), 1474–1479 (2003b). doi:10.1021/cm020889d

    Article  CAS  Google Scholar 

  • Parmar, G.R., Rao, N.N.: Emerging control technologies for volatile organic compounds. Crit. Rev. Environ. Sci. Technol. 39(1), 41–78 (2009). doi:10.1080/10643380701413658

    Article  CAS  Google Scholar 

  • Prouzet, E., Cot, F., Boissiere, C., Kooyman, P.J., Larbot, A.: Nanometric hollow spheres made of MSU-X-type mesoporous silica. J. Mater. Chem. 12(5), 1553–1556 (2002). doi:10.1039/b111236h

    Article  CAS  Google Scholar 

  • Qiao, S.Z., Bhatia, S.K., Nicholson, D.: Study of hexane adsorption in nanoporous MCM-41 silica. Langmuir 20(2), 389–395 (2004). doi:10.1021/la0353430

    Article  CAS  Google Scholar 

  • Qin, Y., Wang, Y., Wang, H., Gao, J., Qu, Z.: Effect of morphology and pore structure of SBA-15 on toluene dynamic adsorption/desorption performance. In: Quan, X. (ed.) 2013 International Symposium on Environmental Science and Technology, vol. 18. Procedia Environmental Sciences, pp. 366–371 (2013)

  • Rudzinski, W., NarkiewiczMichalek, J., Szabelski, P., Chiang, A.S.T.: Adsorption of aromatics in zeolites ZSM-5: a thermodynamic-calorimetric study based on the model of adsorption on heterogeneous adsorption sites? Langmuir 13(5), 1095–1103 (1997). doi:10.1021/la960254r

    Article  CAS  Google Scholar 

  • Ruthstein, S., Frydman, V., Goldfarb, D.: Study of the initial formation stages of the mesoporous material SBA-15 using spin-labeled block co-polymer templates. J. Phys. Chem. B 108(26), 9016–9022 (2004). doi:10.1021/jp049133n

    Article  CAS  Google Scholar 

  • Ruthstein, S., Frydman, V., Kababya, S., Landau, M., Goldfarb, D.: Study of the formation of the mesoporous material SBA-15 by EPR spectroscopy. J. Phys. Chem. B 107(8), 1739–1748 (2003). doi:10.1021/jp021964a

    Article  CAS  Google Scholar 

  • Scherer, G.W., Brinker, C.J.: Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing. Academic Press, San Diego (1990)

    Google Scholar 

  • Schmidt-Winkel, P., Lukens, W.W., Zhao, D.Y., Yang, P.D., Chmelka, B.F., Stucky, G.D.: Mesocellular siliceous foams with uniformly sized cells and windows. J. Am. Chem. Soc. 121(1), 254–255 (1999). doi:10.1021/ja983218i

    Article  CAS  Google Scholar 

  • Sears, G.W.: Determination of Specific Surface Area of Colloidal Silica by Titration with Sodium Hydroxide. Anal. Chem. 28(12), 1981–1983 (1956). doi:10.1021/ac60120a048

    Article  CAS  Google Scholar 

  • Serrano, D.P., Calleja, G., Botas, J.A., Gutierrez, F.J.: Adsorption and hydrophobic properties of mesostructured MCM-41 and SBA-15 materials for volatile organic compound removal. Ind. Eng. Chem. Res. 43(22), 7010–7018 (2004). doi:10.1021/ie040108d

    Article  CAS  Google Scholar 

  • Serrano, D.P., Calleja, G., Botas, J.A., Gutierrez, F.J.: Characterization of adsorptive and hydrophobic properties of silicalite-1, ZSM-5, TS-1 and Beta zeolites by TPD techniques. Sep. Purif. Technol. 54(1), 1–9 (2007). doi:10.1016/j.seppur.2006.08.013

    Article  CAS  Google Scholar 

  • Sing, K.S.W., Everett, D.H., Haul, R.A.W., Moscou, L., Pierotti, R.A., Rouquerol, J., Siemieniewska, T.: Reporting physisorption data for gas solid systems with special reference to the determination of surface-area and porosity (recommendations 1984). Pure Appl. Chem. 57(4), 603–619 (1985). doi:10.1351/pac198557040603

    Article  CAS  Google Scholar 

  • Soni, K.C., Shekar, S.C., Singh, B., Gopi, T.: Catalytic activity of Fe/ZrO2 nanoparticles for dimethyl sulfide oxidation. J. Colloid Interface Sci. 446, 226–236 (2015). doi:10.1016/j.jcis.2015.01.031

    Article  CAS  Google Scholar 

  • Sundblom, A., Oliveira, C.L.P., Palmqvist, A.E.C., Pedersen, J.S.: Modeling in Situ Small-Angle X-ray Scattering Measurements Following the Formation of Mesostructured Silica. J. Phys. Chem. C 113(18), 7706–7713 (2009). doi:10.1021/jp809798c

    Article  CAS  Google Scholar 

  • Szegedi, A., Popova, M., Minchev, C.: Catalytic activity of Co/MCM-41 and Co/SBA-15 materials in toluene oxidation. J. Mater. Sci. 44(24), 6710–6716 (2009). doi:10.1007/s10853-009-3600-y

    Article  CAS  Google Scholar 

  • Tan, B., Rankin, S.E.: Interfacial alignment mechanism of forming spherical silica with radially oriented nanopores. J. Phys. Chem. B 108(52), 20122–20129 (2004). doi:10.1021/jp046425f

    Article  CAS  Google Scholar 

  • Tanev, P.T., Pinnavaia, T.J.: Biomimetic templating of porous lamellar silicas by vesicular surfactant assemblies. Science 271(5253), 1267–1269 (1996). doi:10.1126/science.271.5253.1267

    Article  CAS  Google Scholar 

  • Vinh-Thang, H., Huang, Q.L., Eic, M., Trong-On, D., Kaliaguine, S.: Adsorption of C-7 hydrocarbons on biporous SBA-15 mesoporous silica. Langmuir 21(11), 5094–5101 (2005). doi:10.1021/la050135o

    Article  Google Scholar 

  • Wan, Y., Shi, Y., Zhao, D.: Designed synthesis of mesoporous solids via nonionic-surfactant-templating approach. Chem. Commun. 9, 897–926 (2007). doi:10.1039/b610570j

    Article  Google Scholar 

  • Wang, H.N., Rong, X., Han, L., Tang, M., Yu, M.H., Zhang, J., Huang, W.Q., Chen, R.Y.: Controlled synthesis of hexagonal mesostructure silica and macroporous ordered siliceous foams for VOCs adsorption. Rsc Adv. 5(8), 5695–5703 (2015). doi:10.1039/c4ra12553c

    Article  CAS  Google Scholar 

  • Wang, H.N., Tang, M., Han, L., Cao, J.Y., Zhang, Z.H., Huang, W.Q., Chen, R.Y., Yu, C.Z.: Synthesis of hollow organosiliceous spheres for volatile organic compound removal. J. Mater. Chem. A 2(45), 19298–19307 (2014a). doi:10.1039/c4ta02899f

    Article  CAS  Google Scholar 

  • Wang, H.N., Tang, M., Zhang, K., Cai, D.F., Huang, W.Q., Chen, R.Y., Yu, C.Z.: Functionalized hollow siliceous spheres for VOCs removal with high efficiency and stability. J. Hazard. Mater. 268, 115–123 (2014b). doi:10.1016/j.jhazmat.2013.12.070

    Article  CAS  Google Scholar 

  • Wang, H.N., Wang, Y.H., Zhou, X.F., Zhou, L., Tang, J.W., Lei, J., Yu, C.Z.: Siliceous unilamellar vesicles and foams by using block-copolymer cooperative vesicle templating. Adv. Funct. Mater. 17(4), 613–617 (2007). doi:10.1002/adfm.200600407

    Article  CAS  Google Scholar 

  • Wang, H.N., Zhou, X.F., Yu, M.H., Wang, Y.H., Han, L., Zhang, J., Yuan, P., Auchterlonie, G., Zou, J., Yu, C.Z.: Supra-assembly of siliceous vesicles. J. Am. Chem. Soc. 128(50), 15992–15993 (2006). doi:10.1021/ja066707o

    Article  CAS  Google Scholar 

  • Wang, S.S., Zhang, L., Long, C., Li, A.M.: Enhanced adsorption and desorption of VOCs vapor on novel micro-mesoporous polymeric adsorbents. J. Colloid Interface Sci. 428, 185–190 (2014c). doi:10.1016/j.jcis.2014.04.055

    Article  CAS  Google Scholar 

  • Yang, Y., Karmakar, S., Zhang, J., Yu, M., Mitter, N., Yu, C.: Synthesis of SBA-15 rods with small sizes for enhanced cellular uptake. J. Mater. Chem. B 2(30), 4929–4934 (2014). doi:10.1039/c4tb00595c

    Article  CAS  Google Scholar 

  • Yu, C.Z., Fan, J., Tian, B.Z., Zhao, D.Y., Stucky, G.D.: High-yield synthesis of periodic mesoporous silica rods and their replication to mesoporous carbon rods. Adv. Mater. 14(23), 1742–1745 (2002). doi:10.1002/1521-4095(20021203)14:23<1742:aid-adma1742>3.0.co;2-3

    Article  CAS  Google Scholar 

  • Yuan, P., Yang, S., Wang, H.N., Yu, M.H., Zhou, X.F., Lu, G.Q., Zou, J., Yu, C.Z.: Structure transition from hexagonal mesostructured rodlike silica to multilamellar vesicles. Langmuir 24(9), 5038–5043 (2008). doi:10.1021/la8000569

    Article  CAS  Google Scholar 

  • Yuan, P., Zhou, X.F., Wang, H.N., Liu, N., Hu, Y.F., Auchterlonie, G., Drennan, J., Yao, X.D., Lu, G.Q., Zou, J., Yu, C.Z.: Electron-tomography determination of the packing structure of macroporous ordered siliceous foams assembled from vesicles. Small 5(3), 377–382 (2009). doi:10.1002/smll.200801020

    Article  CAS  Google Scholar 

  • Zhang, L.F., Eisenberg, A.: Morphogenic effect of added ions on crew-cut aggregates of polystyrene-b-poly(acrylic acid) block copolymers in solutions. Macromolecules 29(27), 8805–8815 (1996)

    Article  CAS  Google Scholar 

  • Zhang, W., Qu, Z., Li, X., Wang, Y., Ma, D., Wu, J.: Comparison of dynamic adsorption/desorption characteristics of toluene on different porous materials. J. Environ. Sci. 24(3), 520–528 (2012). doi:10.1016/s1001-0742(11)60751-1

    Article  Google Scholar 

  • Zhao, D.Y., Feng, J.L., Huo, Q.S., Melosh, N., Fredrickson, G.H., Chmelka, B.F., Stucky, G.D.: Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 279(5350), 548–552 (1998a). doi:10.1126/science.279.5350.548

    Article  CAS  Google Scholar 

  • Zhao, D.Y., Huo, Q.S., Feng, J.L., Chmelka, B.F., Stucky, G.D.: Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. J. Am. Chem. Soc. 120(24), 6024–6036 (1998b). doi:10.1021/ja974025i

    Article  CAS  Google Scholar 

  • Zhao, X.S., Ma, Q., Lu, G.Q.M.: VOC removal: comparison of MCM-41 with hydrophobic zeolites and activated carbon. Energy Fuels 12(6), 1051–1054 (1998c). doi:10.1021/ef980113s

    Article  CAS  Google Scholar 

  • Zhu, H.Y., Zhao, X.S., Lu, G.Q., Do, D.D.: Improved comparison plot method for pore structure characterization of MCM-41. Langmuir 12(26), 6513–6517 (1996). doi:10.1021/la960541v

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Science Foundations of China (21101017, 21571024, 21276029 and 51574044), Qing Lan Project of Jiangsu Province (No. SCZ1409700002), Jiangsu Province Science and Technology Support Program (BE2011651), Key University Science Research Project of Jiangsu Province (11KJA610002), Jiangsu Province 333 High Level Personnel Training Project of Scientific (BRA2015375) and Industry and Research Perspective in Jiangsu Province (BY2015027-01) and the Opening Fund from Provincial Key Laboratory of Oil & Gas Storage and Transportation Technology, Jiangsu, P. R. China (cy1201).

Funding

Funding was provided by National Science Foundations of China (Grant Nos. 21101017, 21571024, 21276029, 51574044).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weiqiu Huang or Ruoyu Chen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 6819 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Wang, T., Yu, M. et al. Elaborate control over the morphology and pore structure of porous silicas for VOCs removal with high efficiency and stability. Adsorption 23, 37–50 (2017). https://doi.org/10.1007/s10450-016-9815-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-016-9815-8

Keywords

Navigation