Recovery of butanol from model ABE fermentation broths using MFI adsorbent: a comparison between traditional beads and a structured adsorbent in the form of a film

Abstract

Butanol, a promising biofuel, can be produced by ABE (acetone, butanol and ethanol) fermentation using e.g. Clostridium acetobutylicum. However, the butanol concentration in the resulting broth is limited to only ca. 20 g/L due to the toxicity for the microorganisms. This low product concentration demands an efficient recovery process for successful commercialization of this process. In this study, a structured adsorbent in the form of steel monolith coated with a silicalite-1 film was prepared using the in situ growth method. The adsorbent was carefully characterized by SEM and XRD. The performance of the adsorbent was evaluated by performing breakthrough experiments at room temperature using model ABE fermentation broths and the performance was compared with that of traditional adsorbents in the form of beads. The structured silicalite-1 adsorbent showed less saturation loading time as compared to commercial binder free silicalite-1 beads, reflecting the different dimensions of the columns used, set by experimental constraints. Studies of the desorption process showed that by operating at appropriate conditions, butanol with high concentration i.e. up to 95.2 wt% for butanol–water model system and 88.5 wt% for ABE fermentation broth can be obtained using the structured silicalite-1 adsorbent. Commercial silicalite-1 beads also showed good selectivity but the concentration of butanol in the desorbed product was limited to 70 % for the butanol–water model system and 69 % for ABE fermentation broth, probably as a result of entrained liquid between the beads.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Abdehagh, N., Tezel, F., Thibault, J.: Adsorbent screening for biobutanol separation by adsorption: kinetics, isotherms and competitive effect of other compounds. Adsorption 19(6), 1263–1272 (2013)

    Article  CAS  Google Scholar 

  2. Abdehagh, N., Gurnani, P., Tezel, F.H., Thibault, J.: Adsorptive separation and recovery of biobutanol from ABE model solutions. Adsorption 21(3), 185–194 (2015)

    Article  CAS  Google Scholar 

  3. Abdehagh, N., Tezel, F.H., Thibault, J.: Separation techniques in butanol production: challenges and developments. Biomass Bioenergy 60, 222–246 (2014)

    Article  CAS  Google Scholar 

  4. Águeda, V.I., Delgado, J.A., Uguina, M.A., Sotelo, J.L., García, Á.: Column dynamics of an adsorption-drying-desorption process for butanol recovery from aqueous solutions with silicalite pellets. Sep. Purif. Technol. 104, 307–321 (2013)

    Article  Google Scholar 

  5. Cousin Saint Remi, J., Rémy, T., Van Hunskerken, V., van de Perre, S., Duerinck, T., Maes, M., De Vos, D., Gobechiya, E., Kirschhock, C.E., Baron, G.V.: Biobutanol separation with the metal-organic framework ZIF-8. ChemSusChem 4(8), 1074–1077 (2011)

    Article  CAS  Google Scholar 

  6. Cousin Saint Remi, J., Baron, G., Denayer, J.: Adsorptive separations for the recovery and purification of biobutanol. Adsorption 18(5–6), 367–373 (2012)

    Article  CAS  Google Scholar 

  7. Ezeji, T., Qureshi, N., Blaschek, H.: Acetone butanol ethanol (ABE) production from concentrated substrate: reduction in substrate inhibition by fed-batch technique and product inhibition by gas stripping. Appl. Microbiol. Biotechnol. 63(6), 653–658 (2004)

    Article  CAS  Google Scholar 

  8. Faisal, A., Zarebska, A., Saremi, P., Korelskiy, D., Ohlin, L., Rova, U., Hedlund, J., Grahn, M.: MFI zeolite as adsorbent for selective recovery of hydrocarbons from ABE fermentation broths. Adsorption 20(2–3), 465–470 (2014)

    Article  CAS  Google Scholar 

  9. Farzaneh, A., Richards, T., Sklavounos, E., van Heiningen, A.: A kinetic study of CO2 and steam gasification of char from lignin produced in the SEW process. BioResources 9(2), 3052–3063 (2014)

    Article  Google Scholar 

  10. Fogler, H.S.: Elements of Chemical Reaction Engineering. Prentice Hall, Englewood Cliffs (1999)

    Google Scholar 

  11. Geus, E.R., van Bekkum, H., Bakker, W.J., Moulijn, J.A.: High-temperature stainless steel supported zeolite (MFI) membranes: preparation, module construction, and permeation experiments. Microporous Mater. 1(2), 131–147 (1993)

    Article  CAS  Google Scholar 

  12. Groot, W., Luyben, K.C.A.: In situ product recovery by adsorption in the butanol/isopropanol batch fermentation. Appl. Microbiol. Biotechnol. 25(1), 29–31 (1986)

    CAS  Google Scholar 

  13. Jiao, P., Wu, J., Zhou, J., Yang, P., Zhuang, W., Chen, Y., Zhu, C., Guo, T., Ying, H.: Mathematical modeling of the competitive sorption dynamics of acetone–butanol–ethanol on KA-I resin in a fixed-bed column. Adsorption 21(3), 165–176 (2015)

    Article  CAS  Google Scholar 

  14. Kudahettige-Nilsson, R.L., Helmerius, J., Nilsson, T.R., Sjoblom, M., Hodge, B.D., Rova, U.: Biobutanol production by Clostridium acetobutylicum using xylose recovered from Brich Kraft black liquor. Bioresour. Technol. 176, 71–79 (2015)

    Article  CAS  Google Scholar 

  15. Levenspiel, O.: Chemical Reaction Engineering. Wiley, New York (1972)

    Google Scholar 

  16. Lin, X., Li, R., Wen, Q., Wu, J., Fan, J., Jin, X., Qian, W., Liu, D., Chen, X., Chen, Y.: Experimental and modeling studies on the sorption breakthrough behaviors of butanol from aqueous solution in a fixed-bed of KA-I resin. Biotechnol. Bioprocess Eng. 18(2), 223–233 (2013)

    Article  CAS  Google Scholar 

  17. Maddox, I.: Use of silicalite for the adsorption of n-butanol from fermentation liquors. Biotechnol. Lett. 4(11), 759–760 (1982)

    Article  CAS  Google Scholar 

  18. Malek, A., Farooq, S.: Effect of velocity variation on equilibrium calculations from multicomponent breakthrough experiments. Chem. Eng. Sci. 52(3), 443–447 (1997)

    Article  CAS  Google Scholar 

  19. Melero, J., Calleja, G., Martínez, F., Molina, R., Lázár, K.: Crystallization mechanism of Fe-MFI from wetness impregnated Fe2O3-SiO2 amorphous xerogels: role of iron species in Fenton-like processes. Microporous Mesoporous Mater. 74(1–3), 11–21 (2004)

    Article  CAS  Google Scholar 

  20. Milestone, N.B., Bibby, D.M.: Adsorption of alcohols from aqueous solution by ZSM-5. J. Chem. Technol. Biotechnol. Chem. Technol. 34(2), 73–79 (1984)

    Article  Google Scholar 

  21. Milestone, N.B., Bibby, D.M.: Concentration of alcohols by adsorption on silicalite. J. Chem. Technol. Biotechnol. 31(1), 732–736 (1981)

    Article  CAS  Google Scholar 

  22. Mosca, A., Hedlund, J., Ridha, F.N., Webley, P.: Optimization of synthesis procedures for structured PSA adsorbents. Adsorption 14(4–5), 687–693 (2008)

    Article  CAS  Google Scholar 

  23. Nielsen, D.R., Prather, K.J.: In situ product recovery of n-butanol using polymeric resins. Biotechnol. Bioeng. 102(3), 811–821 (2009)

    Article  CAS  Google Scholar 

  24. Oudshoorn, A., Van der Wielen, L., Straathof, A.: Desorption of butanol from zeolite material. Biochem. Eng. J. 67, 167–172 (2012)

    Article  CAS  Google Scholar 

  25. Oudshoorn, A., van der Wielen, L.A.M., Straathof, A.J.: Adsorption equilibria of bio-based butanol solutions using zeolite. Biochem. Eng. J. 48(1), 99–103 (2009a)

    Article  CAS  Google Scholar 

  26. Oudshoorn, A., van der Wielen, L.A.M., Straathof, A.J.: Assessment of options for selective 1-butanol recovery from aqueous solution. Ind. Eng. Chem. Res. 48(15), 7325–7336 (2009b)

    Article  CAS  Google Scholar 

  27. Park, K.S., Ni, Z., Cote, A.P., Choi, J.Y., Huang, R., Uribe-Romo, F.J., Chae, H.K., O’Keeffe, M., Yaghi, O.M.: Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl. Acad. Sci. USA 103(27), 10186–10191 (2006)

    Article  CAS  Google Scholar 

  28. Popescu, M., Joly, J., Carre, J., Danatoiu, C.: Dynamical adsorption and temperature-programmed desorption of VOCs (toluene, butyl acetate and butanol) on activated carbons. Carbon 41(4), 739–748 (2003)

    Article  CAS  Google Scholar 

  29. Qureshi, N., Hughes, S., Maddox, I., Cotta, M.: Energy-efficient recovery of butanol from model solutions and fermentation broth by adsorption. Bioprocess Biosyst. Eng. 27(4), 215–222 (2005)

    Article  CAS  Google Scholar 

  30. Qureshi, N., Meagher, M., Hutkins, R.: Recovery of butanol from model solutions and fermentation broth using a silicalite/silicone membrane. J. Membr. Sci. 158(1), 115–125 (1999)

    Article  CAS  Google Scholar 

  31. Rezaei, F., Webley, P.: Optimum structured adsorbents for gas separation processes. Chem. Eng. Sci. 64(24), 5182–5191 (2009)

    Article  CAS  Google Scholar 

  32. Ribeiro, A., Neto, P., Pinho, C.: Mean porosity and pressure drop measurements in packed beds of monosized spheres: side wall effects. Int. Rev. Chem. Eng. 2(1), 40–46 (2010)

    Google Scholar 

  33. Ribeiro, R.P., Sauer, T.P., Lopes, F.V., Moreira, R.F., Grande, C.A., Rodrigues, A.E.: Adsorption of CO2, CH4, and N2 in activated carbon honeycomb monolith. J. Chem. Eng. Data 53(10), 2311–2317 (2008)

    Article  CAS  Google Scholar 

  34. Saravanan, V., Waijers, D., Ziari, M., Noordermeer, M.: Recovery of 1-butanol from aqueous solutions using zeolite ZSM-5 with a high Si/Al ratio; suitability of a column process for industrial applications. Biochem. Eng. J. 49(1), 33–39 (2010)

    Article  CAS  Google Scholar 

  35. Thirmal, C., Dahman, Y.: Comparisons of existing pretreatment, saccharification, and fermentation processes for butanol production from agricultural residues. Can. J. Chem. Eng. 90(3), 745–761 (2012)

    Article  CAS  Google Scholar 

  36. Yang, J., Wang, Y., Feng, R.: The performance analysis of an engine fueled with butanolgasoline blend (2011)

  37. Zhang, K., Lively, R.P., Noel, J.D., Dose, M.E., McCool, B.A., Chance, R.R., Koros, W.J.: Adsorption of water and ethanol in MFI-type zeolites. Langmuir 28(23), 8664–8673 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Formas, the Swedish Energy Agency, VINNOVA, Smurfit Kappa and Bio4Energy, a strategic research environment appointed by the Swedish government, for financially supporting this work.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Abrar Faisal.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Faisal, A., Zhou, M., Hedlund, J. et al. Recovery of butanol from model ABE fermentation broths using MFI adsorbent: a comparison between traditional beads and a structured adsorbent in the form of a film. Adsorption 22, 205–214 (2016). https://doi.org/10.1007/s10450-016-9759-z

Download citation

Keywords

  • Structured adsorbent
  • MFI
  • ABE
  • Zeolite
  • Butanol
  • Silicalite-1