Advertisement

Adsorption

, Volume 22, Issue 4–6, pp 673–680 | Cite as

Monte Carlo study of adsorption of additive gas mixture

  • V. F. FefelovEmail author
  • P. V. Stishenko
  • V. M. Kutanov
  • A. V. Myshlyavtsev
  • M. D. Myshlyavtseva
Article

Abstract

The monolayer adsorption of binary gas mixture on a square lattice has been investigated through grand canonical Monte Carlo method and transfer matrix technique. Repulsive and attractive lateral interactions have been introduced between the adsorbed particles for one component of the gas mixture and for another, respectively, at the same time the particles of different components of the gas mixture have not interacted. The model has been studied in the ground state and at finite temperatures. Interesting features of the phase behavior of the gas mixture adlayer were observed and discussed. The model shows that a simultaneous increasing of the chemical potentials of both gas components can lead to displacing of particles of one component on the surfaces by particles of another component.

Keywords

Binary mixtures adsorption Adsorption isotherm Surface thermodynamic Monte Carlo 

Notes

Acknowledgments

This study was supported by the Ministry of Education and Science of the Russian Federation on a budget-funded basis for 2014–2016 (Project No. 16.2413.2014/К).

References

  1. Borówko, M., Patrykiejew, A., Rzysko, W., Sokolowski, S.: A Monte Carlo study of adsorption from mixtures of dimers and monomers on heterogeneous solid surfaces. Langmuir 13, 1073–1078 (1997)CrossRefGoogle Scholar
  2. Bortolani, V., March, N.H., Tosi, M.P. (eds.): Interaction of Atoms and Molecules with Solid Surfaces. Springer, Boston (1990)Google Scholar
  3. Bulnes, F., Ramirez-Pastor, A.J., Pereyra, V.D.: Study of adsorption of binary mixtures on disordered substrates. J. Mol. Catal. Chem. 167, 129–139 (2001)CrossRefGoogle Scholar
  4. Fefelov, V.F., Gorbunov, V.A., Myshlyavtsev, A.V., Myshlyavtseva, M.D.: The simplest self-assembled monolayer model with different orientations of complex organic molecules. Monte Carlo and transfer-matrix techniques. Chem. Eng. J. 154, 107–114 (2009)CrossRefGoogle Scholar
  5. Fefelov, V.F., Gorbunov, V.A., Myshlyavtsev, A.V., Myshlyavtseva, M.D., Akimenko, S.S.: Devil’s staircase behavior of a dimer adsorption model. Adsorption. 19, 495–499 (2013)CrossRefGoogle Scholar
  6. García, G.D., Sánchez-Varretti, F.O., Bulnes, F., Ramirez-Pastor, A.J.: Monte Carlo study of binary mixtures adsorbed on square lattices. Surf. Sci. 606, 83–90 (2012)CrossRefGoogle Scholar
  7. Landau, D.P., Binder, K.: A Guide to Monte Carlo Simulations in Statistical Physics. Cambridge University Press, Cambridge (2009)CrossRefGoogle Scholar
  8. Matoz-Fernandez, D.A., Dávila, M.V., Pasinetti, P.M., Ramirez-Pastor, A.J.: A semiempirical model for adsorption of binary mixtures. Phys. Chem. Chem. Phys. 16, 24063–24068 (2014)CrossRefGoogle Scholar
  9. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equation of state calculations by fast computing machines. J. Chem. Phys. 21, 1087–1092 (1953)CrossRefGoogle Scholar
  10. Myshlyavtsev, A.V., Myshlyavtseva, M.D.: Modeling of adsorption and phase diagrams for stepped surfaces: Transfer matrix approach. Appl. Surf. Sci. 253, 5591–5595 (2007)CrossRefGoogle Scholar
  11. Myshlyavtsev, A.V., Zhdanov, V.P.: The effect of nearest-neighbour and next-nearest-neighbour lateral interactions on thermal desorption spectra. Chem. Phys. Lett. 162, 43–46 (1989)CrossRefGoogle Scholar
  12. Nguyen, V.T., Fan, C., Razak, M.A., Do, D.D., Nicholson, D., Ustinov, E.: Development of kinetic Monte Carlo and Bin-Monte Carlo schemes for simulation of mixtures – vapor–liquid equilibria & adsorption. Chem. Eng. Sci. 102, 220–226 (2013)CrossRefGoogle Scholar
  13. Pinto, O.A., Pasinetti, P.M., Ramirez-Pastor, A.J., Nieto, F.D.: The adsorption of a mixture of particles with non-additive interactions: A Monte Carlo study. Phys. Chem. Chem. Phys. 17, 3050–3058 (2015)CrossRefGoogle Scholar
  14. Rinaldi, P., Bulnes, F., Ramirez-Pastor, A.J., Zgrablich, G.: Monte Carlo study of multicomponent adsorption on triangular lattices. Surf. Sci. 602, 1783–1794 (2008)CrossRefGoogle Scholar
  15. Ruthven, D.M.: Principles of Adsorption and Adsorption Processes. Wiley, New York (1984)Google Scholar
  16. Sanchez-Varretti, F.O., Garcia, G.D.: Percolation of binary mixtures adsorbed on square lattices. Phys. Stat. Mech. Appl. 424, 300–311 (2015)CrossRefGoogle Scholar
  17. Steele, W.A., Zgrablich, G., Rudzinski, W.: Equilibria and Dynamics of Gas Adsorption on Heterogeneous Solid Surfaces. Elsevier, Amsterdam (1996)Google Scholar
  18. Yang, R.T. (ed.): Author Index. In: Gas Separation by Adsorption Processes. pp. 339–345. Butterworth-Heinemann, Boston (1987)Google Scholar
  19. Zhdanov, V.P.: Elementary Physicochemical Processes on Solid Surfaces. Springer, Boston (1991)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • V. F. Fefelov
    • 1
    Email author
  • P. V. Stishenko
    • 1
  • V. M. Kutanov
    • 1
  • A. V. Myshlyavtsev
    • 1
    • 2
  • M. D. Myshlyavtseva
    • 1
  1. 1.Omsk State Technical UniversityOmskRussia
  2. 2.Institute of Hydrocarbons Processing SB RASOmskRussia

Personalised recommendations