Skip to main content
Log in

Removal of atrazine from water using an iron photo catalyst supported on activated carbon

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

Atrazine is a systemic triazine herbicide, which has been classified as an endocrine disrupting pesticide of hormones and the reproductive systems of humans. Moreover, atrazine was recently considered as a potential carcinogen by several reports. The aim of this work was to synthesize and to evaluate an iron catalyst supported on activated carbon to remove atrazine from water. Five different treatment schemas were evaluated: (1) adsorption with the photocatalyst’s support alone, (2) adsorption with the supported photocatalyst alone, (3) adsorption coupled to heterogeneous Fenton reaction, (4) adsorption coupled to heterogeneous advanced oxidation with UV light and (5) adsorption coupled to heterogeneous photo assisted Fenton reaction. The photocatalyst synthesized, via the incipient wet impregnation method, showed 1176 ± 24 m2/g of Langmuir area and 1.6 % wt/wt of iron content. After 120 min of reaction time, total removal efficiencies in the treatment schemas using the photocatalyst ranged from 70 % (mainly adsorption with the photocatalyst alone) to 96 % (Adsorption and heterogeneous photo assisted Fenton reaction). The heterogeneous photo assisted Fenton reaction was the fastest and most efficient treatment schema, with results better than that reported for similar materials. The adsorption data was fitted to a kinetic model of pseudo-second order and the results of advanced oxidation process were fitted to a kinetic model of fractional order.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Andreozzi, R., Caprio, V., Insola, A., Marotta, R.: Advanced oxidation processes (AOP) for wáter purification and recovery. Catal. Today 53, 51–59 (1999)

    Article  CAS  Google Scholar 

  • Apolinário, A., Silva, A., Machado, B., Gomes, H., Araújo, P., Figueiredo, J., Faria, J.: Wet air oxidation for nitro-aromatic compounds: reactivity on single- and multi- component systems and Surface chemistry studies with a carbon xerogel. Appl. Catal. B 84, 75–86 (2008)

    Article  CAS  Google Scholar 

  • Arias Ch.: Desarrollo y aplicación de foto catalizadores soportados en carbón activado a base de óxidos de hierro para remover atrazina presente en agua, Tesis de licenciatura de Ingeniería Química, Facultad de Química, UNAM. http://132.248.9.195/ptd2008/septiembre/0631895/Index.html (2008). Accessed 24 Aug 2015

  • Auer, E., Freund, A., Pietsch, J., Tacke, T.: Carbons as supports for industrial precious metal catalysts. Appl. Catal. A 173, 259–271 (1998)

    Article  CAS  Google Scholar 

  • Bhargava, S., Tardio, J., Prasad, J., Föger, K., Akolekar, D., Grocott, S.: Wet oxidation and catalytic wet oxidation. Ind. Eng. Chem. Res. 45, 1221–1258 (2006)

    Article  CAS  Google Scholar 

  • Benzaquen, T., Benzzo, M., Isla, M., Alfano, O.: Impact of some herbicides on the biomass activity in biological treatment plants and biodegradability enhancement by a photo-Fenton process. Water Sci. Technol. 67, 210–216 (2013)

    Article  CAS  Google Scholar 

  • Bianchi, L., Pirola, C., Vittorio, S.: Mechanism and efficiency of atrazine degradation under combined oxidation processes. Appl. Catal. B 64, 131–138 (2006)

    Article  CAS  Google Scholar 

  • Boffetta, P., Adami, H., Berry, C., Mandel, J.: Atrazine and cancer: a review of epidemiologic evidence. Eur. J. Cancer Prev. 22, 169–180 (2013)

    Article  CAS  Google Scholar 

  • Chan, K.H., Chu, W.: Modeling the reaction kinetics of Fenton’s process on the removal of atrazine. Chemosphere 51, 305–311 (2003)

    Article  CAS  Google Scholar 

  • Chingombe, P., Saha, B., Wakeman, R.: Sorption of atrazine on conventional and surface modified activated carbons. J. Colloid Interface Sci. 302, 408–416 (2006)

    Article  CAS  Google Scholar 

  • Chu, W., Chan, K., Kwan, C., Choi, K.: Degradation of atrazine by modified stepwise-Fenton’s processes. Chemosphere 67, 755–761 (2007)

    Article  CAS  Google Scholar 

  • Cybulski, A.: Catalytic wet air oxidation: are monolithic catalysts and reactors feasible? Ind. Eng. Chem. Res. 46, 4007–4033 (2007)

    Article  CAS  Google Scholar 

  • Dombek, T., Dolan, E., Schultz, J., Klarup, D.: Rapid reductive dechlorination of atrazine by zero-valent iron under acidic conditions. Environ. Pollut. 111, 21–27 (2001)

    Article  CAS  Google Scholar 

  • Domínguez, C., Ocón, P., Quintanilla, A., Casas, J., Rodríguez, J.: Graphite and carbon black materials as catalysts for wet peroxide oxidation. Appl. Catal. B 144, 599–606 (2014)

    Article  CAS  Google Scholar 

  • Freeman, L., Rusiecki, J., Hoppin, J., Lubin, J., Koutros, S., Andreotti, G.: Atrazine and cancer incidence among pesticide applicator in agricultural health study (1994–2007). Environ. Health Perspect. 119, 1253–1259 (2011)

    Article  CAS  Google Scholar 

  • Garrido-Ramírez, E., Theng, B., Mora, M.: Clays and oxide minerals as catalysts and nanocatalysts in Fenton-like reactions—a review. Appl. Clay Sci. 47, 182–192 (2010)

    Article  CAS  Google Scholar 

  • Ghauch, A., Suptil, J.: Remediation of s-triazines contaminated water in a laboratory scale apparatus using zero-valent iron powder. Chemosphere 41, 1835–1843 (2000)

    Article  CAS  Google Scholar 

  • Gernjak, W., Fuerhacker, M., Fernández-Ibañez, P., Blanco, J., Malato, S.: Solar photo-Fenton treatment—process parameters and process control. Appl. Catal. B 64, 121–130 (2006)

    Article  CAS  Google Scholar 

  • Ghosh, P., Philip, L.: Environmental significance of atrazine in aqueous systems and its removal by biological processes: an overview. Glob NEST J 8, 159–178 (2006)

    Google Scholar 

  • Gomes, H., Machado, B., Ribeiro, A., Moreira, I., Rosário, M., Silva, A., Figueiredo, J., Faria, J.: Catalytic properties of carbon materials for wet oxidation of aniline. J. Hazard Mater. 159, 420–426 (2008)

    Article  CAS  Google Scholar 

  • Granados A.: Preparación y caracterización de catalizadores de níquel soportados. Tesis de Maestría. UNAM. http://132.248.9.195/pd2000/277608/Index.html (2000). Accessed 31 Aug 2015

  • Herney-Ramírez, J., Vicente, M., Madeira, L.: Heterogeneous photo-Fenton oxidation with pillared clay-based catalysts for wastewater treatment: a review. Appl. Catal. B 98, 10–26 (2010)

    Article  CAS  Google Scholar 

  • Ho, Y.: Removal copper ions from aqueous solution by tree fern. Water Res. 37, 2323 (2003)

    Article  CAS  Google Scholar 

  • Hoffmann, M., Martin, S., Choi, W., Bahnemann, D.: Environmental applications of semiconductor photocatalysis. Chem. Rev. 95, 69–96 (1995)

    Article  CAS  Google Scholar 

  • Jia, Y., Wang, R., Fane, A.G.: Atrazine adsorption from aqueous solution using powdered activated carbon-Improved mass transfer by air bubbling agitation. Chem. Eng. J. 116, 53–59 (2006)

    CAS  Google Scholar 

  • Kabra, K., Chaudhary, R., Sawhney, R.: Treatment of hazardous organic and inorganic compounds through aqueous-phase photocatalysis: a review. Ind. Eng. Chem. Res. 43, 7683–7696 (2004)

    Article  CAS  Google Scholar 

  • Kim, G., Jeong, W., Choe, S.: Dechlorination of atrazine using zero-valent iron (Fe0) under neutral pH conditions. J. Hazard Mater. 155, 502–506 (2008)

    Article  CAS  Google Scholar 

  • Klamerth, N., Miranda, N., Malato, S., Agüera, A., Fernández-Alba, A., Maldonado, M., Coronado, J.: Degradation of emerging contaminants at low concentrations in MWTPs effluents with mild solar photo-Fenton and TiO2. Catal. Today 144, 124–130 (2009)

    Article  CAS  Google Scholar 

  • Lassere, J., Fack, F., Revets, D., Renault, J., Bohn, T., Gutleb, A., Muller, C., Hoffman, L.: Effects of the endocrine disrupting compounds atrazine and PCB 153 on the protein expression of MCF-7 human breast cancer cells. Toxicol. Lett. 180S, S32–S246 (2008)

    Google Scholar 

  • Lekkerkerker-Teunissen, K., Knol, A., Derks, J., Heringa, M., Houtman, M., Hofman-Caris, C., Beerendonk, E., Reus, A., Verberk, J., Van Dijk, J.: Pilot plant results with three different types of UV lamps for advanced oxidation. Ozone Sci. Eng. 35, 38–48 (2013)

    Article  CAS  Google Scholar 

  • Leofanti, G., Padovan, M., Tozzola, B., Venturelli, B.: Surface area and pore texture of catalysts. Catal. Today 41, 207–219 (1998)

    Article  CAS  Google Scholar 

  • Liotta, L., Gruttadauria, M., Di Carlo, G., Perrini, G., Librando, V.: Heterogeneous catalytic degradation of phenolic substrates: catalysts activity. J. Hazard Mater. 162, 588–606 (2009)

    Article  CAS  Google Scholar 

  • Liselotte, C., Fabricius, I.: Atrazine, isoproturon, mecoprop, 2,4-D and betazone adsorption onto iron oxides. J. Environ. Qual. 30, 858–869 (2001)

    Article  Google Scholar 

  • Macías-Flores, A., Tafoya-Garnica, A., Ruíz-Ordaz, N., Salmeron-Alcocer, A., Juárez-Ramírez, C., Ahuatzi-Chacon, D.: Atrazine biodegradation by a bacterial community immobilized in two types of packed-bed biofilm reactors. World J. Microbiol. Biotechnol. 25, 2195–2204 (2009)

    Article  CAS  Google Scholar 

  • Maldonado, M., Passarinho, P., Oller, I., Gernjak, W., Fernández, P., Blanco, J., Malato, S.: Photocatalytic degradation of EU priority substances: a comparison between TiO2 and Fenton plus photo-Fenton in a solar pilot plant. J. Photochem. Photobiol. A: Chem. 185, 354–363 (2007)

    Article  CAS  Google Scholar 

  • Marin, M., Lhiaubet-Vallet, V., Santos-Juanes, L., Soler, J., Gomis, J., Arques, A., Amat, A., Miranda, M.: A photophysical approach to investigate the photooxidation mechanism of pesticides: hydroxyl radical versus electron transfer. Appl. Catal. B 103, 48–53 (2011)

    Article  CAS  Google Scholar 

  • Mazet, M., Farkhani, B., Baudu, M.: Influence of heat or chemical treatment of activated carbon onto the adsorption of organic compounds. Water Res. 28, 1609–1617 (1994)

    Article  CAS  Google Scholar 

  • Mi, Y., Hu, W., Dan, Y., Liu, Y.: Synthesis of carbon micro-spheres by a glucose hydrothermal method. Mater. Lett. 62, 1194–1196 (2008)

    Article  CAS  Google Scholar 

  • Morales-Torres, S., Silva, A., Pérez-Cadenas, A., Faria, J., Maldonado-Hódar, F., Figueiredo, J., Carrasco-Marín, F.: Wet air oxidation of trinitrophenol with activated carbon catalysts: effect of textural properties on the mechanism of degradation. Appl. Catal. B 100, 310–317 (2010)

    Article  CAS  Google Scholar 

  • Parra, S., Stanca, S.E.: Photocatalytic degradation of atrazine using suspended and supported TiO2. Appl. Catal. B: Environ. 51, 107–116 (2004)

    Article  CAS  Google Scholar 

  • Pérez, M., Peñuela, G., Maldonado, M., Malato, O., Fernández-Ibáñez, P., Oller, L., Gernjak, W., Malato, S.: Degradation of pesticides in water using solar advanced oxidation processes. Appl. Catal. B 64, 272–281 (2006)

    Article  CAS  Google Scholar 

  • Restivo, J., Rocha, R., Silva, A., Órfao, J., Pereira, M., Figueiredo, J.: Catalytic performance of heteroatom-modified carbon nanotubes in advanced oxidation processes. Chin. J. Catal. 35, 896–905 (2014)

    Article  CAS  Google Scholar 

  • Ribeiro, A., Nunes, O., Pereira, M., Silva, A.: An overview on the advanced oxidation processes applied for the treatment of water pollutants defined in the recently launched Directive 2013/39/EU. Environ. Int. 75, 33–51 (2015)

    Article  CAS  Google Scholar 

  • Rocha, R., Sousa, J., Silva, A., Pereira, M., Figueiredo, J.: Catalytic activity and stability of multiwalled carbon nanotubes in catalytic wet air oxidation of oxalic acid: the role of the basic nature induced by the surface chemistry. Appl. Catal. B 104, 330–336 (2011)

    Article  CAS  Google Scholar 

  • Rocha, R., Silva, A., Romero, S., Pereira, M., Figueiredo, J.: The role of O- and S- containing Surface groups on carbon nanotubes for the elimination of organic pollutants by catalytic wet air oxidation. Appl. Catal. B 147, 314–321 (2014)

    Article  CAS  Google Scholar 

  • Rodríguez, M., Álvarez, M., Rivas, F., Beltrán, F.: Wet peroxide degradation of atrazine. Chemosphere 54, 71–78 (2004)

    Article  CAS  Google Scholar 

  • Savitz, D., Arbuckle, T., Kaczor, D., Curtis, K.: Male pesticide exposure and pregnancy outcome. Am. J. Epidemiol. 146, 1025–1036 (1997)

    Article  CAS  Google Scholar 

  • Sing, K.: Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl. Chem. 54, 2201–2218 (1982)

    Article  Google Scholar 

  • Sousa, J., Silva, A., Pereira, M., Figueiredo, J.: Wet air oxidation of aniline using carbon foams and fibers enriched with nitrogen. Sep. Sci. Technol. 45, 1546–1554 (2010)

    Article  CAS  Google Scholar 

  • Souza, B., Dantas, R., Cruz, A., Sans, C., Esplugas, S., Dezotti, M.: Photochemical oxidation of municipal secondary effluents at low H2O2 dosage: study of hydroxyl radical scavenging and process performance. Chem. Eng. J. 237, 268–276 (2014)

    Article  CAS  Google Scholar 

  • Streat, M., Sweetland, L.: Removal of pesticides from water using hypercrosslinked polymer phases. Trans. IChemE. Part 2(76), 127–134 (1998)

    Article  Google Scholar 

  • Streat, M., Horner, D.: Adsorption of highly soluble herbicides from water using activated carbon and hypercrosslinked polymers. Trans. IChemE Part B 78, 363–382 (2000)

    Article  CAS  Google Scholar 

  • Stüber, F., Font, J., Fortuny, A., Bengoa, C., Eftaxias, A., Fabregat, A.: Carbon materials and catalytic wet air oxidation of organic pollutants in wastewater. Top. Catal. 33, 3–50 (2005)

    Article  CAS  Google Scholar 

  • US-EPA: Atrazine Updates. http://www.epa.gov/pesticides/reregistration/atrazine/atrazine_update.htm (2013). Accessed 26 Aug 2015

  • US-EPA: Atrazine. Chemical Summary. http://www.epa.gov/teach/chem_summ/Atrazine_summary.pdf (2006). Accessed 26 Aug 2015

  • US-EPA: Treatment technology for pesticide manufacturing effluents: Atrazine, Maneb, MSMA, and Oryzalin. http://nepis.epa.gov/Exe/ZyNET.exe/9101PT4X.TXT?ZyActionD=ZyDocument&Client=EPA&Index=1976+Thru+1980&Docs=&Query=&Time=&EndTime=&SearchMethod=1&TocRestrict=n&Toc=&TocEntry=&QField=&QFieldYear=&QFieldMonth=&QFieldDay=&IntQFieldOp=0&ExtQFieldOp=0&XmlQuery=&File=D%3A%5Czyfiles%5CIndex%20Data%5C76thru80%5CTxt%5C00000033%5C9101PT4X.txt&User=ANONYMOUS&Password=anonymous&SortMethod=h%7C-&MaximumDocuments=1&FuzzyDegree=0&ImageQuality=r75g8/r75g8/x150y150g16/i425&Display=p%7Cf&DefSeekPage=x&SearchBack=ZyActionL&Back=ZyActionS&BackDesc=Results%20page&MaximumPages=1&ZyEntry=1&SeekPage=x&ZyPURL (1980). Accessed 26 Aug 2015

  • Yang, B., Cao, Y., Qi, F., Li, X., Xu, Q.: Atrazine adsorption removal with nylon6/polypyrrole core-shell nanofibers mat: possible mechanism and characteristics. Nanoscale Res. Lett. 10, 207–220 (2015)

    Article  CAS  Google Scholar 

  • Yildirim, M., Kaya, V., Yildiz, M., Demirpence, O., Gunduz, S., Dilli, U.D.: Esophageal cancer, gastric cancer and the use of pesticides in the southwestern of Turkey. Asian Pac. J. Cancer Prev. 15, 2821–2823 (2014)

    Article  Google Scholar 

  • Yu, L., Yang, X., Ye, Y., Wang, D.: Efficient removal of atrazine in water with a Fe3O4/MWCNTs nanocomposite as a heterogeneous Fenton-like catalyst. RSC Adv. 5, 46059–46066 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors thanks CONACYT for the financial giving to this research project. Authors are grateful to Dra. Gretchen T. Lapidus Lavine from Universidad Autónoma Metropolitana—Iztapalapa for making possible the AA analysis. They are also grateful to M. en C. Leticia García for atrazine analysis, and to Dr. Omar Novelo Peralta from the Instituto de Investigaciones en Materiales of the UNAM for SEM analysis. A. Morales-Pérez gratefully acknowledges the finantial support for the PhD. Scholarship from “Coordinación de Estudios de Posgrado” and “Instituto de Ingeniería” Universidad Nacional Autónoma de México.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosa-María Ramírez-Zamora.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morales-Pérez, A.A., Arias, C. & Ramírez-Zamora, RM. Removal of atrazine from water using an iron photo catalyst supported on activated carbon. Adsorption 22, 49–58 (2016). https://doi.org/10.1007/s10450-015-9739-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-015-9739-8

Keywords

Navigation