Skip to main content
Log in

Kinetics of protein adsorption by nanoporous carbons with different pore size

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

Kinetics of bovine serum albumin and ovalbumin adsorption by nanoporous carbons with different main pore sizes (1.6, 5, 7.8 and 28 nm) was studied. Experimental kinetics curves were well described by multi-exponential equation with different number of exponents (from 1 to 4). Protein adsorption kinetics showed significant dependence on pore size of carbonaceous adsorbent. Correlation between pore size distribution and amount of protein adsorbed revealed threshold pore size 7.3 nm for BSA and 6.8 nm for OVA, which are close to hydrodynamic diameter of protein molecules. The fastest and the highest adsorption of proteins were observed in carbons having developed porosity with pore sizes larger than 15 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Amsden, B.: Solute diffusion within hydrogels. Mechanisms and Models. Macromolecules 31, 8382–8395 (1998)

    Article  CAS  Google Scholar 

  • Boehm, H.P.: Surface oxides on carbon and their analysis: a critical assessment. Carbon 40, 145–149 (2002)

    Article  CAS  Google Scholar 

  • Boyd, G.E., Adamson, A.W., Myers, L.S.: The exchange adsorption of ions from aqueous solutions by organic zeolites. II. Kinetics. J. Am. Chem. Soc. 69, 2836–2848 (1947)

    Article  CAS  Google Scholar 

  • Brandt, A., Bülow, M., Deryło-Marczewska, A., Goworek, J., Schmeißer, J., Schöps, W., Unger, B.: Novel zeolite composites and consequences for rapid sorption processes. Adsorption 13, 267–279 (2007)

    Article  CAS  Google Scholar 

  • Cagnon, B., Py, X., Guillot, A., Joly, J.P., Berjoan, R.: Pore structure modification of pitch-based activated carbon by NaOCl and air oxidation/pyrolysis cycles. Micropor. Mesopor. Mater. 80, 183–193 (2005)

    Article  CAS  Google Scholar 

  • Chen, X., Hu, L., Liu, J., Chen, S., Wang, J.: Nanoscale carbon-based materials in protein isolation and preconcentration. TrAC Trends Anal. Chem. 48, 30–39 (2013)

    Article  CAS  Google Scholar 

  • Cooney, D.O.: Activated Charcoal in Medical Applications. Marcel Dekker, New York (1995)

    Book  Google Scholar 

  • Crank, J.: Mathematics of Diffusion. Clarendon Press, Oxford (1975)

    Google Scholar 

  • Dean, J.A. (ed.) Lange’s Handbook of Chemistry. McGraw-Hill, Inc., New York (1999)

  • Del Piero, S., Melchior, A., Polese, P., Portanova, R., Tolazzi, M.: A novel multipurpose Excel tool for equilibrium speciation based on Newton-Raphson method and on a hybrid genetic algorithm. Ann. Chim. 96, 29–47 (2006)

    Article  Google Scholar 

  • Derylo-Marczewska, A., Marczewski, A.W., Winter, S., Sternik, D.: Studies of adsorption equilibria and kinetics in the systems: Aqueous solution of dyes–mesoporous carbons. Appl. Surf. Sci. 256, 5164–5170 (2010a)

    Article  CAS  Google Scholar 

  • Derylo-Marczewska, A., Miroslaw, K., Marczewski, A.W., Sternik, D.: Studies of adsorption equilibria and kinetics of o-, m-, p-nitro- and chlorophenols on microporous carbons from aqueous solutions. Adsorption 16, 359–375 (2010b)

    Article  CAS  Google Scholar 

  • Diao, X., Wang, Y., Zhao, J., Zhu, S.: Effect of pore-size of mesoporous SBA-15 on adsorption of bovine serum albumin and lysozyme protein. Chin. J. Chem. Eng. 18, 493–499 (2010)

    Article  CAS  Google Scholar 

  • Gardner, D.G., Gardner, J.C., Laush, G., Meinke, W.W.: Method for the analysis of multicomponent exponential decay curves. J. Chem. Phys. 31, 978 (1959)

    Article  CAS  Google Scholar 

  • Gilbert, M.T., Knox, J.H., Kaur, B.: Porous glassy carbon, a new columns packing material for gas chromatography and high-performance liquid chromatography. Chromatographia 16, 138–146 (1982)

    Article  CAS  Google Scholar 

  • Gomes, H.T., Miranda, S.M., Sampaio, M.J., Silva, A.M.T., Faria, J.L.: Activated carbons treated with sulphuric acid: catalysts for catalytic wet peroxide oxidation. Catal. Today 151, 153–158 (2010)

    Article  CAS  Google Scholar 

  • Gor, G.Y., Thommes, M., Cychosz, K.A., Neimark, A.V.: Quenched solid density functional theory method for characterization of mesoporous carbons by nitrogen adsorption. Carbon 50, 1583–1590 (2012)

    Article  CAS  Google Scholar 

  • Grzyb, B., Hildenbrand, C., Berthon-Fabry, S., Bégin, D., Job, N., Rigacci, A., Achard, P.: Functionalisation and chemical characterisation of cellulose-derived carbon aerogels. Carbon 48, 2297–2307 (2010)

    Article  CAS  Google Scholar 

  • Hu, C., Sedghi, S., Madani, S.H., Silvestre-Albero, A., Sakamoto, H., Kwong, P., Pendleton, P., Smernik, R.J., Rodríguez-Reinoso, F., Kaneko, K., Biggs, M.J.: Control of the pore size distribution and its spatial homogeneity in particulate activated carbon. Carbon 78, 113–120 (2014)

    Article  CAS  Google Scholar 

  • Hu, C., Smillie, L.A., Liu, A.C.Y., Weyland, M., Hadi Madani, S., Pendleton, P., Rodríguez-Reinoso, F., Kaneko, K., Biggs, M.J.: A multi-method study of the transformation of the carbonaceous skeleton of a polymer-based nanoporous carbon along the activation pathway. Carbon 85, 119–134 (2015)

    Article  CAS  Google Scholar 

  • Katiyar, A., Ji, L., Smirniotis, P., Pinto, N.G.: Protein adsorption on the mesoporous molecular sieve silicate SBA-15: effects of pH and pore size. J. Chromatogr. A 1069, 119–126 (2005)

    Article  CAS  Google Scholar 

  • Kharlamova, M.V., Mochalin, V.N., Lukatskaya, M.R., Niu, J., Presser, V., Mikhalovsky, S., Gogotsi, Y.: Adsorption of proteins in channels of carbon nanotubes: effect of surface chemistry. Mater. Express. 3, 1–10 (2013)

    Article  CAS  Google Scholar 

  • Knox, J.H., Kaur, B., Millward, G.R.: Structure and performance of porous graphitic carbon in liquid chromatography. J. Chromatogr. A 352, 3–25 (1986)

    Article  CAS  Google Scholar 

  • Kyotani, T., Nagai, T., Inoue, S., Tomita, A.: Formation of new type of porous carbon by carbonization in zeolite nanochannels. Chem. Mater. 9, 609–615 (1997)

    Article  CAS  Google Scholar 

  • Landers, J., Gor, G.Y., Neimark, A.V.: Density functional theory methods for characterization of porous materials. Colloids Surf. A Physicochem. Eng. Asp. 437, 3–32 (2013)

    Article  CAS  Google Scholar 

  • Lázaro, M.J., Calvillo, L., Bordejé, E.G., Moliner, R., Juan, R., Ruiz, C.R.: Functionalization of ordered mesoporous carbons synthesized with SBA-15 silica as template. Micropor. Mesopor. Mater. 103, 158–165 (2007)

    Article  Google Scholar 

  • Lee, J., Yoon, S., Hyeon, T., Oh, S.M., Kim, K.B.: Synthesis of a new mesoporous carbon and its application to electrochemical double-layer capacitors. Chem. Commun. 21, 2177–2178 (1999)

    Article  Google Scholar 

  • Legallais, C., Gautier, A., Dufresne, M., Carpentier, B., Baudoin, R.: The place of adsorption and biochromatography in extracorporeal liver support systems. J. Chromatogr. B 861, 171–176 (2008)

    Article  CAS  Google Scholar 

  • Li, Z., Jaroniec, M.: Colloidal Imprinting: a novel approach to the synthesis of mesoporous carbons. J. Am. Chem. Soc. 123, 9208–9209 (2001)

    Article  CAS  Google Scholar 

  • Long, D., Zhang, R., Qiao, W., Zhang, L., Liang, X., Ling, L.: Biomolecular adsorption behavior on spherical carbon aerogels with various mesopore sizes. J. Colloid Interface Sci. 331, 40–46 (2009)

    Article  CAS  Google Scholar 

  • Ma, Z., Kyotani, T., Tomita, A.: Synthesis methods for preparing microporous carbons with a structural regularity of zeolite Y. Carbon 40, 2367–2374 (2002)

    Article  CAS  Google Scholar 

  • Marczewski, A.W.: Kinetics and equilibrium of adsorption of organic solutes on mesoporous carbons. Appl. Surf. Sci. 253, 5818–5826 (2007)

    Article  CAS  Google Scholar 

  • Marczewski, A.W.: Kinetics and equilibrium of adsorption of dissociating solutes from aqueous solutions on mesoporous carbons. Pol. J. Chem. 82, 271–281 (2008)

    CAS  Google Scholar 

  • Marczewski, A.W.: Application of mixed order rate equations to adsorption of methylene blue on mesoporous carbons. Appl. Surf. Sci. 256, 5145–5152 (2010)

    Article  CAS  Google Scholar 

  • Marczewski, A.W., Deryło-Marczewska, A., Słota, A.: Adsorption and desorption kinetics of benzene derivatives on mesoporous carbons. Adsorption 19, 391–406 (2013)

    Article  CAS  Google Scholar 

  • Mikhalovsky, S.V., Nikolaev, V.G.: Activated carbons as medical adsorbents. In: Bandosz, T.J. (ed.) Activated Carbon Surfaces in Environmental Remediation, pp. 529–561. Academic Press, Amsterdam (2006)

    Chapter  Google Scholar 

  • Mikhalovsky, S.V., Sandeman, S.R., Howell, C.A., Phillips, G.J., Nikolaev, V.G.: Biomedical applications of carbon adsorbents. In: Tascón, J.M.D. (ed.) Novel Carbon Adsorbents, pp. 639–669. Elsevier, Amsterdam (2012)

    Chapter  Google Scholar 

  • Neimark, A.V., Lin, Y., Ravikovitch, P.I., Thommes, M.: Quenched solid density functional theory and pore size analysis of micro-mesoporous carbons. Carbon 47, 1617–1628 (2009)

    Article  CAS  Google Scholar 

  • Nishihara, H., Kyotani, T.: Zeolite-templated carbon—its unique characteristics and applications. In: Tascón, J.M.D. (ed.) Novel Carbon Adsorbents, pp. 295–322. Elsevier, Amsterdam (2012)

    Chapter  Google Scholar 

  • Nishihara, H., Yang, Q.-H., Hou, P.-X., Unno, M., Yamauchi, S., Saito, R., Paredes, J.I., Martínez-Alonso, A., Tascón, J.M.D., Sato, Y., Terauchi, M., Kyotani, T.: A possible buckybowl-like structure of zeolite templated carbon. Carbon 47, 1220–1230 (2009)

    Article  CAS  Google Scholar 

  • Provencher, S.W.: A constrained regularization method for inverting data represented by linear algebraic or integral equations. Comput. Phys. Commun. 27, 213–227 (1982a)

    Article  Google Scholar 

  • Provencher, S.W.: CONTIN: A general purpose constrained regularization program for inverting noisy linear algebraic and integral equations. Comput. Phys. Commun. 27, 229–242 (1982b)

    Article  Google Scholar 

  • Puzii, A.M., Stavitskaya, S.S., Poddubnaya, O.I., Vikarchuk, V.M., Tsyba, N.N.: Structural and adsorption properties of active carbon from coconut shells modified with phosphorus heteroatoms. Theor. Exp. Chem. 48, 272–277 (2012)

    Article  CAS  Google Scholar 

  • Puziy, A.M., Matynia, T., Gawdzik, B., Poddubnaya, O.I.: Use of CONTIN for Calculation of Adsorption Energy Distribution. Langmuir 15, 6016–6025 (1999)

    Article  CAS  Google Scholar 

  • Puziy, A.M., Poddubnaya, O.I., Gawdzik, B., Sobiesiak, M., Reinish, C.A., Tsyba, M.M., Segeda, T.P., Danylenko, M.I.: Preparation of nanostructured carbons for solid phase extraction. Ann. UMCS Chem. 64, 64–74 (2009)

    Article  CAS  Google Scholar 

  • Puziy, A.M., Poddubnaya, O.I., Gawdzik, B., Sobiesiak, M., Reinish, C.A., Tsyba, M.M., Segeda, T.P., Danylenko, M.I.: Nanostructured carbons for solid phase extraction. Appl. Surf. Sci. 256, 5216–5220 (2010)

    Article  CAS  Google Scholar 

  • Puziy, A.M., Poddubnaya, O.I., Gawdzik, B., Sobiesiak, M., Tsyba, M.M.: Functionalization of carbon and silica gel by phosphoric acid. Adsorpt. Sci. Technol. 25, 531–542 (2007)

    Article  CAS  Google Scholar 

  • Puziy, A.M., Poddubnaya, O.I., Ritter, J.A., Ebner, A.D., Holland, C.E.: Elucidation of the ion binding mechanism in heterogeneous carbon-composite adsorbents. Carbon 39, 2313–2324 (2001)

    Article  CAS  Google Scholar 

  • Py, X., Guillot, A., Cagnon, B.: Activated carbon porosity tailoring by cyclic sorption/decomposition of molecular oxygen. Carbon 41, 1533–1543 (2003)

    Article  CAS  Google Scholar 

  • Qin, H., Gao, P., Wang, F., Zhao, L., Zhu, J., Wang, A., Zhang, T., Wu, R.A., Zou, H.: Highly efficient extraction of serum peptides by ordered mesoporous carbon. Angew. Chem. Int. Ed. 50, 12218–12221 (2011)

    Article  CAS  Google Scholar 

  • Razumiene, J., Vilkanauskyte, A., Gureviciene, V., Barkauskas, J., Meskys, R., Laurinavicius, V.: Direct electron transfer between PQQ dependent glucose dehydrogenases and carbon electrodes: an approach for electrochemical biosensors. Electrochim. Acta 51, 5150–5156 (2006)

    Article  CAS  Google Scholar 

  • Reichenberg, D.: Properties of ion-exchange resins in relation to their structure. III. Kinetics of exchange. J. Am. Chem. Soc. 75, 589–597 (1953)

    Article  CAS  Google Scholar 

  • Rouquerol, J., Llewellyn, P., Rouquerol, F.: Is the BET equation applicable to microporous adsorbents? In: Llewellyn, P.L., Rodriquez-Reinoso, F., Rouqerol, J., Seaton, N. (eds.) Characterization of Porous Solids VII, pp. 49–56. Elsevier, Amsterdam (2007)

    Google Scholar 

  • Ryoo, R., Joo, S.H., Jun, S.: Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation. J. Phys. Chem. B. 103, 7743–7746 (1999)

    Article  CAS  Google Scholar 

  • Sang, L.-C., Vinu, A., Coppens, M.-O.: General description of the adsorption of proteins at their iso-electric point in nanoporous materials. Langmuir 27, 13828–13837 (2011)

    Article  CAS  Google Scholar 

  • Schrap, S.M., Sleijpen, G.L.G., Seinen, W., Opperhuizen, A.: Sorption kinetics of chlorinated hydrophobic organic chemicals. Environ. Sci. Pollut. Res. 1, 21–28 (1994)

    Article  CAS  Google Scholar 

  • Seredych, M., Bandosz, T.J.: Surface properties of porous carbons obtained from polystyrene-based polymers within inorganic templates: role of polymer chemistry and inorganic template pore structure. Micropor. Mesopor. Mater. 100, 45–54 (2007)

    Article  CAS  Google Scholar 

  • Sing, K.S.W., Everett, D.H., Haul, R.A.W., Moscou, L., Pierotti, R.A., Rouquerol, J., Siemieniewska, T.: Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl. Chem. 57, 603–619 (1985)

    Article  CAS  Google Scholar 

  • Stone, M.T., Kozlov, M.: Separating proteins with activated carbon. Langmuir 30, 8046–8055 (2014)

    Article  CAS  Google Scholar 

  • Su, F., Zhou, Z., Guo, W., Liu, J., Tian, X.N., Zhao, X.S.: Template approaches to preparing porous carbon. In: Radovic, L.R. (ed.) Chemistry and Physics of Carbon, pp. 63–128. Taylor & Francis, Boca Raton (2008)

    Google Scholar 

  • Vinu, A., Miyahara, M., Ariga, K.: Biomaterial immobilization in nanoporous carbon molecular sieves: influence of solution pH, pore volume, and pore diameter. J. Phys. Chem. B. 109, 6436–6441 (2005a)

    Article  CAS  Google Scholar 

  • Vinu, A., Miyahara, M., Mori, T., Ariga, K.: Carbon nanocage: a large-pore cage-type mesoporous carbon material as an adsorbent for biomolecules. J. Porous Mater. 13, 379–383 (2006)

    Article  CAS  Google Scholar 

  • Vinu, A., Miyahara, M., Sivamurugan, V., Mori, T., Ariga, K.: Large pore cage type mesoporous carbon, carbon nanocage: a superior adsorbent for biomaterials. J. Mater. Chem. 15, 5122–5127 (2005b)

    Article  CAS  Google Scholar 

  • Weber, W.J., Morris, J.C.: Kinetics of adsorption on carbon from solution. J. Sanit. Eng. Div. 89, 31–60 (1963)

    Google Scholar 

  • Yushin, G., Hoffman, E.N., Barsoum, M.W., Gogotsi, Y., Howell, C.A., Sandeman, S.R., Phillips, G.J., Lloyd, A.W., Mikhalovsky, S.V.: Mesoporous carbide-derived carbon with porosity tuned for efficient adsorption of cytokines. Biomaterials 27, 5755–5762 (2006)

    Article  CAS  Google Scholar 

  • Zakhidov, A.A., Baughman, R.H., Iqbal, Z., Cui, C., Khayrullin, I., Dantas, S.O., Marti, J., Ralchenko, V.G.: Carbon structures with three-dimensional periodicity at optical wavelengths. Science 282, 897–901 (1998)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The research leading to these results has received funding from the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme FP7/2007-2013/under REA grant agreement n° PIRSES-GA-2013-612484 and from National Academy of Sciences of Ukraine (projects 0110U001330 and 0110U004545).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander M. Puziy.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 14856 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Puziy, A.M., Poddubnaya, O.I., Derylo-Marczewska, A. et al. Kinetics of protein adsorption by nanoporous carbons with different pore size. Adsorption 22, 541–552 (2016). https://doi.org/10.1007/s10450-015-9723-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-015-9723-3

Keywords

Navigation