Advertisement

Adsorption

, Volume 22, Issue 4–6, pp 541–552 | Cite as

Kinetics of protein adsorption by nanoporous carbons with different pore size

  • Alexander M. PuziyEmail author
  • Olga I. Poddubnaya
  • Anna Derylo-Marczewska
  • Adam W. Marczewski
  • Magdalena Blachnio
  • Mykola M. Tsyba
  • Vitaliy I. Sapsay
  • Dmytro O. Klymchuk
Article

Abstract

Kinetics of bovine serum albumin and ovalbumin adsorption by nanoporous carbons with different main pore sizes (1.6, 5, 7.8 and 28 nm) was studied. Experimental kinetics curves were well described by multi-exponential equation with different number of exponents (from 1 to 4). Protein adsorption kinetics showed significant dependence on pore size of carbonaceous adsorbent. Correlation between pore size distribution and amount of protein adsorbed revealed threshold pore size 7.3 nm for BSA and 6.8 nm for OVA, which are close to hydrodynamic diameter of protein molecules. The fastest and the highest adsorption of proteins were observed in carbons having developed porosity with pore sizes larger than 15 nm.

Keywords

Templated carbons Protein adsorption Kinetics of adsorption Porous structure Pore size threshold 

Notes

Acknowledgments

The research leading to these results has received funding from the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme FP7/2007-2013/under REA grant agreement n° PIRSES-GA-2013-612484 and from National Academy of Sciences of Ukraine (projects 0110U001330 and 0110U004545).

Supplementary material

10450_2015_9723_MOESM1_ESM.docx (14.5 mb)
Supplementary material 1 (DOCX 14856 kb)

References

  1. Amsden, B.: Solute diffusion within hydrogels. Mechanisms and Models. Macromolecules 31, 8382–8395 (1998)CrossRefGoogle Scholar
  2. Boehm, H.P.: Surface oxides on carbon and their analysis: a critical assessment. Carbon 40, 145–149 (2002)CrossRefGoogle Scholar
  3. Boyd, G.E., Adamson, A.W., Myers, L.S.: The exchange adsorption of ions from aqueous solutions by organic zeolites. II. Kinetics. J. Am. Chem. Soc. 69, 2836–2848 (1947)CrossRefGoogle Scholar
  4. Brandt, A., Bülow, M., Deryło-Marczewska, A., Goworek, J., Schmeißer, J., Schöps, W., Unger, B.: Novel zeolite composites and consequences for rapid sorption processes. Adsorption 13, 267–279 (2007)CrossRefGoogle Scholar
  5. Cagnon, B., Py, X., Guillot, A., Joly, J.P., Berjoan, R.: Pore structure modification of pitch-based activated carbon by NaOCl and air oxidation/pyrolysis cycles. Micropor. Mesopor. Mater. 80, 183–193 (2005)CrossRefGoogle Scholar
  6. Chen, X., Hu, L., Liu, J., Chen, S., Wang, J.: Nanoscale carbon-based materials in protein isolation and preconcentration. TrAC Trends Anal. Chem. 48, 30–39 (2013)CrossRefGoogle Scholar
  7. Cooney, D.O.: Activated Charcoal in Medical Applications. Marcel Dekker, New York (1995)CrossRefGoogle Scholar
  8. Crank, J.: Mathematics of Diffusion. Clarendon Press, Oxford (1975)Google Scholar
  9. Dean, J.A. (ed.) Lange’s Handbook of Chemistry. McGraw-Hill, Inc., New York (1999)Google Scholar
  10. Del Piero, S., Melchior, A., Polese, P., Portanova, R., Tolazzi, M.: A novel multipurpose Excel tool for equilibrium speciation based on Newton-Raphson method and on a hybrid genetic algorithm. Ann. Chim. 96, 29–47 (2006)CrossRefGoogle Scholar
  11. Derylo-Marczewska, A., Marczewski, A.W., Winter, S., Sternik, D.: Studies of adsorption equilibria and kinetics in the systems: Aqueous solution of dyes–mesoporous carbons. Appl. Surf. Sci. 256, 5164–5170 (2010a)CrossRefGoogle Scholar
  12. Derylo-Marczewska, A., Miroslaw, K., Marczewski, A.W., Sternik, D.: Studies of adsorption equilibria and kinetics of o-, m-, p-nitro- and chlorophenols on microporous carbons from aqueous solutions. Adsorption 16, 359–375 (2010b)CrossRefGoogle Scholar
  13. Diao, X., Wang, Y., Zhao, J., Zhu, S.: Effect of pore-size of mesoporous SBA-15 on adsorption of bovine serum albumin and lysozyme protein. Chin. J. Chem. Eng. 18, 493–499 (2010)CrossRefGoogle Scholar
  14. Gardner, D.G., Gardner, J.C., Laush, G., Meinke, W.W.: Method for the analysis of multicomponent exponential decay curves. J. Chem. Phys. 31, 978 (1959)CrossRefGoogle Scholar
  15. Gilbert, M.T., Knox, J.H., Kaur, B.: Porous glassy carbon, a new columns packing material for gas chromatography and high-performance liquid chromatography. Chromatographia 16, 138–146 (1982)CrossRefGoogle Scholar
  16. Gomes, H.T., Miranda, S.M., Sampaio, M.J., Silva, A.M.T., Faria, J.L.: Activated carbons treated with sulphuric acid: catalysts for catalytic wet peroxide oxidation. Catal. Today 151, 153–158 (2010)CrossRefGoogle Scholar
  17. Gor, G.Y., Thommes, M., Cychosz, K.A., Neimark, A.V.: Quenched solid density functional theory method for characterization of mesoporous carbons by nitrogen adsorption. Carbon 50, 1583–1590 (2012)CrossRefGoogle Scholar
  18. Grzyb, B., Hildenbrand, C., Berthon-Fabry, S., Bégin, D., Job, N., Rigacci, A., Achard, P.: Functionalisation and chemical characterisation of cellulose-derived carbon aerogels. Carbon 48, 2297–2307 (2010)CrossRefGoogle Scholar
  19. Hu, C., Sedghi, S., Madani, S.H., Silvestre-Albero, A., Sakamoto, H., Kwong, P., Pendleton, P., Smernik, R.J., Rodríguez-Reinoso, F., Kaneko, K., Biggs, M.J.: Control of the pore size distribution and its spatial homogeneity in particulate activated carbon. Carbon 78, 113–120 (2014)CrossRefGoogle Scholar
  20. Hu, C., Smillie, L.A., Liu, A.C.Y., Weyland, M., Hadi Madani, S., Pendleton, P., Rodríguez-Reinoso, F., Kaneko, K., Biggs, M.J.: A multi-method study of the transformation of the carbonaceous skeleton of a polymer-based nanoporous carbon along the activation pathway. Carbon 85, 119–134 (2015)CrossRefGoogle Scholar
  21. Katiyar, A., Ji, L., Smirniotis, P., Pinto, N.G.: Protein adsorption on the mesoporous molecular sieve silicate SBA-15: effects of pH and pore size. J. Chromatogr. A 1069, 119–126 (2005)CrossRefGoogle Scholar
  22. Kharlamova, M.V., Mochalin, V.N., Lukatskaya, M.R., Niu, J., Presser, V., Mikhalovsky, S., Gogotsi, Y.: Adsorption of proteins in channels of carbon nanotubes: effect of surface chemistry. Mater. Express. 3, 1–10 (2013)CrossRefGoogle Scholar
  23. Knox, J.H., Kaur, B., Millward, G.R.: Structure and performance of porous graphitic carbon in liquid chromatography. J. Chromatogr. A 352, 3–25 (1986)CrossRefGoogle Scholar
  24. Kyotani, T., Nagai, T., Inoue, S., Tomita, A.: Formation of new type of porous carbon by carbonization in zeolite nanochannels. Chem. Mater. 9, 609–615 (1997)CrossRefGoogle Scholar
  25. Landers, J., Gor, G.Y., Neimark, A.V.: Density functional theory methods for characterization of porous materials. Colloids Surf. A Physicochem. Eng. Asp. 437, 3–32 (2013)CrossRefGoogle Scholar
  26. Lázaro, M.J., Calvillo, L., Bordejé, E.G., Moliner, R., Juan, R., Ruiz, C.R.: Functionalization of ordered mesoporous carbons synthesized with SBA-15 silica as template. Micropor. Mesopor. Mater. 103, 158–165 (2007)CrossRefGoogle Scholar
  27. Lee, J., Yoon, S., Hyeon, T., Oh, S.M., Kim, K.B.: Synthesis of a new mesoporous carbon and its application to electrochemical double-layer capacitors. Chem. Commun. 21, 2177–2178 (1999)CrossRefGoogle Scholar
  28. Legallais, C., Gautier, A., Dufresne, M., Carpentier, B., Baudoin, R.: The place of adsorption and biochromatography in extracorporeal liver support systems. J. Chromatogr. B 861, 171–176 (2008)CrossRefGoogle Scholar
  29. Li, Z., Jaroniec, M.: Colloidal Imprinting: a novel approach to the synthesis of mesoporous carbons. J. Am. Chem. Soc. 123, 9208–9209 (2001)CrossRefGoogle Scholar
  30. Long, D., Zhang, R., Qiao, W., Zhang, L., Liang, X., Ling, L.: Biomolecular adsorption behavior on spherical carbon aerogels with various mesopore sizes. J. Colloid Interface Sci. 331, 40–46 (2009)CrossRefGoogle Scholar
  31. Ma, Z., Kyotani, T., Tomita, A.: Synthesis methods for preparing microporous carbons with a structural regularity of zeolite Y. Carbon 40, 2367–2374 (2002)CrossRefGoogle Scholar
  32. Marczewski, A.W.: Kinetics and equilibrium of adsorption of organic solutes on mesoporous carbons. Appl. Surf. Sci. 253, 5818–5826 (2007)CrossRefGoogle Scholar
  33. Marczewski, A.W.: Kinetics and equilibrium of adsorption of dissociating solutes from aqueous solutions on mesoporous carbons. Pol. J. Chem. 82, 271–281 (2008)Google Scholar
  34. Marczewski, A.W.: Application of mixed order rate equations to adsorption of methylene blue on mesoporous carbons. Appl. Surf. Sci. 256, 5145–5152 (2010)CrossRefGoogle Scholar
  35. Marczewski, A.W., Deryło-Marczewska, A., Słota, A.: Adsorption and desorption kinetics of benzene derivatives on mesoporous carbons. Adsorption 19, 391–406 (2013)CrossRefGoogle Scholar
  36. Mikhalovsky, S.V., Nikolaev, V.G.: Activated carbons as medical adsorbents. In: Bandosz, T.J. (ed.) Activated Carbon Surfaces in Environmental Remediation, pp. 529–561. Academic Press, Amsterdam (2006)CrossRefGoogle Scholar
  37. Mikhalovsky, S.V., Sandeman, S.R., Howell, C.A., Phillips, G.J., Nikolaev, V.G.: Biomedical applications of carbon adsorbents. In: Tascón, J.M.D. (ed.) Novel Carbon Adsorbents, pp. 639–669. Elsevier, Amsterdam (2012)CrossRefGoogle Scholar
  38. Neimark, A.V., Lin, Y., Ravikovitch, P.I., Thommes, M.: Quenched solid density functional theory and pore size analysis of micro-mesoporous carbons. Carbon 47, 1617–1628 (2009)CrossRefGoogle Scholar
  39. Nishihara, H., Kyotani, T.: Zeolite-templated carbon—its unique characteristics and applications. In: Tascón, J.M.D. (ed.) Novel Carbon Adsorbents, pp. 295–322. Elsevier, Amsterdam (2012)CrossRefGoogle Scholar
  40. Nishihara, H., Yang, Q.-H., Hou, P.-X., Unno, M., Yamauchi, S., Saito, R., Paredes, J.I., Martínez-Alonso, A., Tascón, J.M.D., Sato, Y., Terauchi, M., Kyotani, T.: A possible buckybowl-like structure of zeolite templated carbon. Carbon 47, 1220–1230 (2009)CrossRefGoogle Scholar
  41. Provencher, S.W.: A constrained regularization method for inverting data represented by linear algebraic or integral equations. Comput. Phys. Commun. 27, 213–227 (1982a)CrossRefGoogle Scholar
  42. Provencher, S.W.: CONTIN: A general purpose constrained regularization program for inverting noisy linear algebraic and integral equations. Comput. Phys. Commun. 27, 229–242 (1982b)CrossRefGoogle Scholar
  43. Puzii, A.M., Stavitskaya, S.S., Poddubnaya, O.I., Vikarchuk, V.M., Tsyba, N.N.: Structural and adsorption properties of active carbon from coconut shells modified with phosphorus heteroatoms. Theor. Exp. Chem. 48, 272–277 (2012)CrossRefGoogle Scholar
  44. Puziy, A.M., Matynia, T., Gawdzik, B., Poddubnaya, O.I.: Use of CONTIN for Calculation of Adsorption Energy Distribution. Langmuir 15, 6016–6025 (1999)CrossRefGoogle Scholar
  45. Puziy, A.M., Poddubnaya, O.I., Gawdzik, B., Sobiesiak, M., Reinish, C.A., Tsyba, M.M., Segeda, T.P., Danylenko, M.I.: Preparation of nanostructured carbons for solid phase extraction. Ann. UMCS Chem. 64, 64–74 (2009)CrossRefGoogle Scholar
  46. Puziy, A.M., Poddubnaya, O.I., Gawdzik, B., Sobiesiak, M., Reinish, C.A., Tsyba, M.M., Segeda, T.P., Danylenko, M.I.: Nanostructured carbons for solid phase extraction. Appl. Surf. Sci. 256, 5216–5220 (2010)CrossRefGoogle Scholar
  47. Puziy, A.M., Poddubnaya, O.I., Gawdzik, B., Sobiesiak, M., Tsyba, M.M.: Functionalization of carbon and silica gel by phosphoric acid. Adsorpt. Sci. Technol. 25, 531–542 (2007)CrossRefGoogle Scholar
  48. Puziy, A.M., Poddubnaya, O.I., Ritter, J.A., Ebner, A.D., Holland, C.E.: Elucidation of the ion binding mechanism in heterogeneous carbon-composite adsorbents. Carbon 39, 2313–2324 (2001)CrossRefGoogle Scholar
  49. Py, X., Guillot, A., Cagnon, B.: Activated carbon porosity tailoring by cyclic sorption/decomposition of molecular oxygen. Carbon 41, 1533–1543 (2003)CrossRefGoogle Scholar
  50. Qin, H., Gao, P., Wang, F., Zhao, L., Zhu, J., Wang, A., Zhang, T., Wu, R.A., Zou, H.: Highly efficient extraction of serum peptides by ordered mesoporous carbon. Angew. Chem. Int. Ed. 50, 12218–12221 (2011)CrossRefGoogle Scholar
  51. Razumiene, J., Vilkanauskyte, A., Gureviciene, V., Barkauskas, J., Meskys, R., Laurinavicius, V.: Direct electron transfer between PQQ dependent glucose dehydrogenases and carbon electrodes: an approach for electrochemical biosensors. Electrochim. Acta 51, 5150–5156 (2006)CrossRefGoogle Scholar
  52. Reichenberg, D.: Properties of ion-exchange resins in relation to their structure. III. Kinetics of exchange. J. Am. Chem. Soc. 75, 589–597 (1953)CrossRefGoogle Scholar
  53. Rouquerol, J., Llewellyn, P., Rouquerol, F.: Is the BET equation applicable to microporous adsorbents? In: Llewellyn, P.L., Rodriquez-Reinoso, F., Rouqerol, J., Seaton, N. (eds.) Characterization of Porous Solids VII, pp. 49–56. Elsevier, Amsterdam (2007)Google Scholar
  54. Ryoo, R., Joo, S.H., Jun, S.: Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation. J. Phys. Chem. B. 103, 7743–7746 (1999)CrossRefGoogle Scholar
  55. Sang, L.-C., Vinu, A., Coppens, M.-O.: General description of the adsorption of proteins at their iso-electric point in nanoporous materials. Langmuir 27, 13828–13837 (2011)CrossRefGoogle Scholar
  56. Schrap, S.M., Sleijpen, G.L.G., Seinen, W., Opperhuizen, A.: Sorption kinetics of chlorinated hydrophobic organic chemicals. Environ. Sci. Pollut. Res. 1, 21–28 (1994)CrossRefGoogle Scholar
  57. Seredych, M., Bandosz, T.J.: Surface properties of porous carbons obtained from polystyrene-based polymers within inorganic templates: role of polymer chemistry and inorganic template pore structure. Micropor. Mesopor. Mater. 100, 45–54 (2007)CrossRefGoogle Scholar
  58. Sing, K.S.W., Everett, D.H., Haul, R.A.W., Moscou, L., Pierotti, R.A., Rouquerol, J., Siemieniewska, T.: Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl. Chem. 57, 603–619 (1985)CrossRefGoogle Scholar
  59. Stone, M.T., Kozlov, M.: Separating proteins with activated carbon. Langmuir 30, 8046–8055 (2014)CrossRefGoogle Scholar
  60. Su, F., Zhou, Z., Guo, W., Liu, J., Tian, X.N., Zhao, X.S.: Template approaches to preparing porous carbon. In: Radovic, L.R. (ed.) Chemistry and Physics of Carbon, pp. 63–128. Taylor & Francis, Boca Raton (2008)Google Scholar
  61. Vinu, A., Miyahara, M., Ariga, K.: Biomaterial immobilization in nanoporous carbon molecular sieves: influence of solution pH, pore volume, and pore diameter. J. Phys. Chem. B. 109, 6436–6441 (2005a)CrossRefGoogle Scholar
  62. Vinu, A., Miyahara, M., Mori, T., Ariga, K.: Carbon nanocage: a large-pore cage-type mesoporous carbon material as an adsorbent for biomolecules. J. Porous Mater. 13, 379–383 (2006)CrossRefGoogle Scholar
  63. Vinu, A., Miyahara, M., Sivamurugan, V., Mori, T., Ariga, K.: Large pore cage type mesoporous carbon, carbon nanocage: a superior adsorbent for biomaterials. J. Mater. Chem. 15, 5122–5127 (2005b)CrossRefGoogle Scholar
  64. Weber, W.J., Morris, J.C.: Kinetics of adsorption on carbon from solution. J. Sanit. Eng. Div. 89, 31–60 (1963)Google Scholar
  65. Yushin, G., Hoffman, E.N., Barsoum, M.W., Gogotsi, Y., Howell, C.A., Sandeman, S.R., Phillips, G.J., Lloyd, A.W., Mikhalovsky, S.V.: Mesoporous carbide-derived carbon with porosity tuned for efficient adsorption of cytokines. Biomaterials 27, 5755–5762 (2006)CrossRefGoogle Scholar
  66. Zakhidov, A.A., Baughman, R.H., Iqbal, Z., Cui, C., Khayrullin, I., Dantas, S.O., Marti, J., Ralchenko, V.G.: Carbon structures with three-dimensional periodicity at optical wavelengths. Science 282, 897–901 (1998)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Alexander M. Puziy
    • 1
    Email author
  • Olga I. Poddubnaya
    • 1
  • Anna Derylo-Marczewska
    • 2
  • Adam W. Marczewski
    • 2
  • Magdalena Blachnio
    • 2
  • Mykola M. Tsyba
    • 1
  • Vitaliy I. Sapsay
    • 3
  • Dmytro O. Klymchuk
    • 3
  1. 1.Institute for Sorption and Problems of EndoecologyNational Academy of Sciences of UkraineKievUkraine
  2. 2.Faculty of ChemistryMaria Curie-Skłodowska UniversityLublinPoland
  3. 3.M.G. Kholodny Institute of BotanyNational Academy of Sciences of UkraineKievUkraine

Personalised recommendations