Skip to main content
Log in

DFT analysis of coordination polymer ligands: unraveling the electrostatic properties and their effect on CO2 interaction

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

Coordination polymer with pillared layer structures, also known as coordination polymer ligands (CPLs) are a novel class of nanoporous adsorbent materials that exhibit higher adsorption affinity for CO2 than for other small molecules, such as O2, N2, and CH4. In this work, DFT calculations were used to analyze the relation between electrostatic properties of CPL-2, CPL-4, CPL-5, and CPL-7, and their interaction with CO2, in order to elucidate structural features that promote this interaction. The B3LYP and ωB97XD functionals were used to calculate electrostatic properties, including atomic charges, electrostatic potential, electric field, and electric field gradient. Both functionals showed similar results and indicated that the pore exposed carboxylate groups in each CPL-n have a strong charge separation, a mixed electrostatic potential, and a high electric field gradient. In general, three CO2 interacting regions were elucidated. The principal interacting sites are the pore exposed carboxylate groups, the aromatic ring from pyrazine-2,3-dicarboxylate (pzdc) groups, and some chemical functionalities at the pillar-ligands. The CO2 electrostatic potential upon interaction revealed that the interaction is dictated by the coupling of the electrostatic potential between the CO2 and the CPL-n model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Bae, Y.-S., Snurr, R.Q.: Development and evaluation of porous materials for carbon dioxide separation and capture. Angew. Chem. Int. Ed. Engl. 50, 11586–11596 (2011)

    Article  CAS  Google Scholar 

  • Bae, Y.-S., Moon, J.-H., Ahn, H., Lee, C.-H.: Effects of adsorbate properties on adsorption mechanism in a carbon molecular sieve. Korean J. Chem. Eng. 21, 712–720 (2004)

    Article  CAS  Google Scholar 

  • Baei, M.: DFT study of CO2 adsorption on the Zn12O12 nano-cage. Bull. Korean Chem. Soc. 34, 3722–3726 (2013)

    Article  CAS  Google Scholar 

  • Bakowies, D., Thiel, W.: Hybrid models for combined quantum mechanical and molecular mechanical approaches. J. Phys. Chem. 3654, 10580–10594 (1996)

    Article  Google Scholar 

  • Barter, R.M.: Specificity in physical sorption. J. Colloid Interface Sci. 21, 415–434 (1966)

    Article  Google Scholar 

  • Becke, A.D.: Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993)

    Article  CAS  Google Scholar 

  • Bjornsson, R., Michael, B.: Electric field gradients of transition metal complexes from density functional theory: assessment of functionals, geometries and basis sets. Dalt. Trans. 39, 5319–5324 (2010)

    Article  CAS  Google Scholar 

  • Boys, S.F., Bernardi, F.: The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol. Phys. 19, 553–566 (1970)

    Article  CAS  Google Scholar 

  • Breneman, C.M., Wiberg, K.B.: Determining atom-centered monopoles from molecular electrostatic potentials. The need for high sampling density in formamide conformational analysis. J. Comput. Chem. 11, 361–373 (1990)

    Article  CAS  Google Scholar 

  • Byun, K.S., Morokuma, K.: A new ONIOM implementation in Gaussian98. Part I. The calculation of energies, gradients, vibrational frequencies and electric field derivatives. J. Mol. Struct. 461, 1–21 (1999)

    Google Scholar 

  • Chai, J.-D., Head-Gordon, M.: Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. Phys. Chem. Chem. Phys. 10, 6615–6620 (2008)

    Article  CAS  Google Scholar 

  • Choi, S., Drese, J.H., Jones, C.W.: Adsorbent materials for carbon dioxide capture from large anthropogenic point sources. ChemSusChem. 2, 796–854 (2009)

    Article  CAS  Google Scholar 

  • Culp, J.T., Chen, D.-L., Liu, J., Chirdon, D., Kauffman, K., Goodman, A., Johnson, J.K.: Effect of spin-crossover-induced pore contraction on CO2-host interactions in the porous coordination polymers [Fe(pyrazine)M(CN)4] (M = Ni, Pt). Eur. J. Inorg. Chem. 2013, 511–519 (2013)

    Article  CAS  Google Scholar 

  • Da Silva, E.F., Svendsen, H.F.: Computational chemistry study of reactions, equilibrium and kinetics of chemical CO2 absorption. Int. J. Greenh. Gas Control. 1, 151–157 (2007)

    Article  Google Scholar 

  • Davran-Candan, T.: DFT modeling of CO2 interaction with various aqueous amine structures. J. Phys. Chem. A 118, 4582–4590 (2014)

    Article  CAS  Google Scholar 

  • Deshmukh, M.M., Ohba, M., Kitagawa, S., Sakaki, S.: Absorption of CO2 and CS2 into the Hofmann-type porous coordination polymer: electrostatic versus dispersion interactions. J. Am. Chem. Soc. 135, 4840–4849 (2013)

    Article  CAS  Google Scholar 

  • Devic, T., Salles, F., Bourrelly, S., Moulin, B., Maurin, G., Horcajada, P., Serre, C., Vimont, A., Lavalley, J.-C., Leclerc, H., Clet, G., Daturi, M., Llewellyn, P.L., Filinchuk, Y., Férey, G.: Effect of the organic functionalization of flexible MOFs on the adsorption of CO2. J. Mater. Chem. 22, 10266–10273 (2012)

    Article  CAS  Google Scholar 

  • Dunning, T.H.J., Hay, P.J.: Gaussian basis sets for molecular calculations. In: Schaefer, H.F.I. (ed.) Modern Theoretical Chemistry, pp. 1–28. Plenum, New York (1976)

    Google Scholar 

  • Forrest, K.A., Pham, T., Hogan, A., Mclaughlin, K., Tudor, B., Nugent, P., Burd, S.D., Mullen, A., Cioce, C.R., Wojtas, L., Zaworotko, M.J., Space, B.: Computational studies of CO2 sorption and separation in an ultramicroporous metal–organic material. J. Phys. Chem. C 117, 17687–17698 (2013)

    Article  CAS  Google Scholar 

  • Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J.A., Peralta, J.E.J., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, O., Foresman, J.B., Ortiz, J. V., Cioslowski, J., Fox, D.J.: Guassian 09, http://www.gaussian.com/ (2009)

  • García-Ricard, O.J., Hernández-Maldonado, A.J.: Cu2(pyrazine-2,3-dicarboxylate)2(4,4′-bipyridine) porous coordination sorbents: activation temperature, textural properties, and CO2 adsorption at low pressure range. J. Phys. Chem. C 114, 1827–1834 (2010)

    Article  Google Scholar 

  • García-Ricard, O.J., Fu, R., Hernández-Maldonado, A.J.: Thermally induced changes in a porous coordination polymer Cu2(pyrazine-2,3-dicarboxylate)2(4,4′-bipyridine) studied via in situ X-ray diffraction and 13C cross-polarization magic angle spinning nuclear magnetic resonance spectroscopy. J. Phys. Chem. C 115, 3595–3601 (2011)

    Article  Google Scholar 

  • García-Ricard, O.J., Silva-Martínez, J.C., Hernández-Maldonado, A.J.: Systematic evaluation of textural properties, activation temperature and gas uptake of Cu2(pzdc)2L [L = dipyridyl-based ligands] porous coordination pillared-layer networks. Dalt. Trans. 41, 8922–8930 (2012)

    Article  Google Scholar 

  • García-Ricard, O.J., Meza-Morales, P., Silva-Martínez, J.C., Curet-Arana, M.C., Hogan, J.A., Hernández-Maldonado, A.J.: Carbon dioxide storage and sustained delivery by Cu2(pzdc)2L [L = dipyridyl-based ligand] pillared-layer porous coordination networks. Microporous Mesoporous Mater. 177, 54–58 (2013)

    Article  Google Scholar 

  • Glaser, R., Wu, Z., Lewis, M.: A higher level ab initio quantum-mechanical study of the quadrupole moment tensor components of carbon dioxide. J. Mol. Struct. 556, 131–141 (2000)

    Article  CAS  Google Scholar 

  • Glaser, R., Lewis, M., Wu, Z.: Theoretical study of the quadrupolarity of carbodiimide. J. Phys. Chem. A 106, 7950–7957 (2002)

    Article  CAS  Google Scholar 

  • Glockler, G.: Carbon-oxygen bond energies and bond distances. J. Phys. Chem. 62, 1049–1054 (1958)

    Article  CAS  Google Scholar 

  • Grajciar, L., Wiersum, A.D., Llewellyn, P.L., Chang, J., Nachtigall, P.: Understanding CO2 adsorption in CuBTC MOF: comparing combined DFT-ab initio calculations with microcalorimetry experiments. J. Phys. Chem. C 115, 17925–17933 (2011)

    Article  CAS  Google Scholar 

  • Grajciar, L., Nachtigall, P., Bludský, O., Rubeš, M.: Accurate ab initio description of adsorption on coordinatively unsaturated Cu2+ and Fe3+ sites in MOFs. J. Chem. Theory Comput. 11, 230–238 (2015)

    Article  CAS  Google Scholar 

  • Grosch, J.S., Paesani, F.: Molecular-level characterization of the breathing behavior of the jungle-gym-type DMOF-1 metal-organic framework. J. Am. Chem. Soc. 134, 4207–4215 (2012)

    Article  CAS  Google Scholar 

  • Harries, J.E.: The quadrupole moment of CO2, measured from the far infrared spectrum. J. Phys. B 3, 150–152 (1970)

    Article  Google Scholar 

  • Haskopoulos, A., Maroulis, G.: Dipole and quadrupole (hyper)polarizability for the asymmetric stretching of carbon dioxide: improved agreement between theory and experiment. Chem. Phys. Lett. 417, 235–240 (2006)

    Article  CAS  Google Scholar 

  • Hay, P.J., Wadt, W.R.: Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J. Chem. Phys. 82, 270–283 (1985)

    Article  CAS  Google Scholar 

  • Hijikata, Y., Sakaki, S.: Interaction of various gas molecules with paddle-wheel-type open metal sites of porous coordination polymers: theoretical investigation. Inorg. Chem. 53, 2417–2426 (2014)

    Article  CAS  Google Scholar 

  • Ismael, M., Sahnoun, R., Suzuki, A., Koyama, M., Tsuboi, H., Hatakeyama, N., Endou, A., Takaba, H., Kubo, M., Shimizu, S., Del Carpio, C.A., Miyamoto, A.: A DFT study on the carbamates formation through the absorption of CO2 by AMP. Int. J. Greenh. Gas Control. 3, 612–616 (2009)

    Article  CAS  Google Scholar 

  • Ji, H., Park, J., Cho, M., Jung, Y.: Assessments of semilocal density functionals and corrections for carbon dioxide adsorption on metal-organic frameworks. ChemPhysChem 15, 3157–3165 (2014)

    Article  CAS  Google Scholar 

  • Johnson, B.G., Gill, P.M.W., Pople, J.A., Fox, D.J.: Computing molecular electrostatic potentials with the PRISM algorithm. Chem. Phys. Lett. 206, 239–246 (1993)

    Article  CAS  Google Scholar 

  • Kim, K.C., Yu, D., Snurr, R.Q.: Computational screening of functional groups for ammonia capture in metal-organic frameworks. Langmuir 29, 1446–1456 (2013)

    Article  CAS  Google Scholar 

  • Kitagawa, S., Kitaura, R., Noro, S.: Functional porous coordination polymers. Angew. Chem. Int. Ed. 43, 2334–2375 (2004)

    Article  CAS  Google Scholar 

  • Kitaura, R., Fujimoto, K., Noro, S., Kondo, M., Kitagawa, S.: A pillared-layer coordination polymer network displaying hysteretic sorption: [Cu2(pzdc)2(dpyg)]n (pzdc = Pyrazine-2,3-dicarboxylate; dpyg = 1,2-di(4-pyridyl)-glycol). Angew. Chemie Int. Ed. 41, 133–135 (2002)

    Article  CAS  Google Scholar 

  • Kondo, M., Okubo, T., Asami, A., Noro, S., Yoshitomi, T., Kitagawa, S., Ishii, T., Matsuzaka, H., Seki, K.: Rational synthesis of stable channel-like cavities with methane gas adsorption properties: [{Cu2(pzdc)(L)n](pzdc = pyra-zine-2,3-dicarboxylate; L = a Pillar Ligand). Angew. Chemie Int. Ed. 38, 140–143 (1999)

    Article  CAS  Google Scholar 

  • Krishnan, R., Binkley, J.S., Seeger, R., Pople, J.A.: Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J. Chem. Phys. 72, 650–654 (1980)

    Article  CAS  Google Scholar 

  • Kuppler, R.J., Timmons, D.J., Fang, Q.-R., Li, J.-R., Makal, T.A., Young, M.D., Yuan, D., Zhao, D., Zhuang, W., Zhou, H.-C.: Potential applications of metal-organic frameworks. Coord. Chem. Rev. 253, 3042–3066 (2009)

    Article  CAS  Google Scholar 

  • Lewis, M., Wu, Z., Glaser, R.: Polarizabilities of carbon dioxide and carbodiimide. Assessment of theoretical model dependencies on dipole polarizabilities and dipole polarizability anisotropies †. J. Phys. Chem. A 104, 11355–11361 (2000)

    Article  CAS  Google Scholar 

  • Li, J.-R., Kuppler, R.J., Zhou, H.-C.: Selective gas adsorption and separation in metal–organic frameworks. Chem. Soc. Rev. 38, 1477–1504 (2009)

    Article  CAS  Google Scholar 

  • Li, J.-R., Ma, Y., McCarthy, M.C., Sculley, J., Yu, J., Jeong, H.-K., Balbuena, P.B., Zhou, H.-C.: Carbon dioxide capture-related gas adsorption and separation in metal-organic frameworks. Coord. Chem. Rev. 255, 1791–1823 (2011)

    Article  CAS  Google Scholar 

  • Li, J.-R., Sculley, J., Zhou, H.-C.: Metal–organic frameworks for separations. Chem. Rev. 112, 869–932 (2012)

    Article  CAS  Google Scholar 

  • Liu, Y., Liu, J., Chang, M., Zheng, C.: Theoretical studies of CO2 adsorption mechanism on linkers of metal–organic frameworks. Fuel 95, 521–527 (2012)

    Article  CAS  Google Scholar 

  • Maroulis, G.: Electric (hyper)polarizability derivatives for the symmetric stretching of carbon dioxide. Chem. Phys. 291, 81–95 (2003)

    Article  CAS  Google Scholar 

  • Maroulis, G.: A note on the electric multipole moments of carbon dioxide. Chem. Phys. Lett. 396, 66–68 (2004)

    Article  CAS  Google Scholar 

  • Matsuda, R., Tsujino, T., Sato, H., Kubota, Y., Morishige, K., Takata, M., Kitagawa, S.: Temperature responsive channel uniformity impacts on highly guest-selective adsorption in a porous coordination polymer. Chem. Sci. 1, 315–321 (2010)

    Article  CAS  Google Scholar 

  • McLean, A.D., Chandler, G.S.: Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z = 11–18. J. Chem. Phys. 72, 5639–5648 (1980)

    Article  CAS  Google Scholar 

  • Millward, A.R., Yaghi, O.M.: Metal–organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature. J. Am. Chem. Soc. 127, 17998–17999 (2005)

    Article  CAS  Google Scholar 

  • Mu, W., Liu, D., Zhong, C.: A computational study of the effect of doping metals on CO2/CH4 separation in metal–organic frameworks. Microporous Mesoporous Mater. 143, 66–72 (2011)

    Article  CAS  Google Scholar 

  • Nijem, N., Thissen, P., Yao, Y., Longo, R.C., Roodenko, K., Wu, H., Zhao, Y., Cho, K., Li, J., Langreth, D.C., Chabal, Y.J.: Understanding the preferential adsorption of CO2 over N2 in a flexible metal–organic framework. J. Am. Chem. Soc. 133, 12849–12857 (2011)

    Article  CAS  Google Scholar 

  • Noro, S., Kitagawa, S., Kondo, M., Seki, K.: A new, methane adsorbent, porous coordination polymer [{CuSiF6(4,4′-bypyridine)2}n]. Angew. Chemie Int. Ed. 39, 2081–2084 (2000)

    Article  Google Scholar 

  • Noro, S., Hijikata, Y., Inukai, M., Fukushima, T., Horike, S., Higuchi, M., Kitagawa, S., Akutagawa, T., Nakamura, T.: Highly selective CO2 adsorption accompanied with low-energy regeneration in a two-dimensional Cu(II) porous coordination polymer with inorganic fluorinated PF6 anions. Inorg. Chem. 52, 280–285 (2013)

    Article  CAS  Google Scholar 

  • Oktavian, R., Taha, M., Lee, M.: Experimental and computational study of co2 storage and sequestration with aqueous 2-amino-2-hydroxymethyl-1,3-propanediol (TRIS) solutions. J. Phys. Chem. A 118, 11572–11582 (2014)

    Article  CAS  Google Scholar 

  • Pianwanit, A., Kritayakornupong, C., Vongachariya, A., Selphusit, N., Ploymeerusmee, T., Remsungnen, T., Nuntasri, D., Fritzsche, S., Hannongbua, S.: The optimal binding sites of CH4 and CO2 molecules on the metal-organic framework MOF-5: ONIOM calculations. Chem. Phys. 349, 77–82 (2008)

    Article  CAS  Google Scholar 

  • Pilar, F.L.: Bond-order/bond-length and bond-energy/bond-length relations for carbon-oxygen bonds. J. Mol. Spectrosc. 5, 72–77 (1960)

    Article  CAS  Google Scholar 

  • Raghavachari, K.: Perspective on “DENSITY functional thermochemistry. III. The role of exact exchange”. In: Cramer, C.J., Truhlar, D.G. (eds.) Theoretical Chemistry Accounts, pp. 361–363. Springer, Berlin (2001)

    Google Scholar 

  • Ramsahye, N.A., Maurin, G., Bourrelly, S., Llewellyn, P.L., Serre, C., Loiseau, T., Devic, T., Ferey, G.: Probing the adsorption sites for CO2 in metal organic frameworks materials MIL-53 (Al, Cr) and MIL-47 (V) by density functional theory. J. Phys. Chem. 112, 514–520 (2008)

    CAS  Google Scholar 

  • Reed, A.E.: Natural bond orbital analysis of near-Hartree–Fock water dimer. J. Chem. Phys. 78, 4066–4073 (1983)

    Article  CAS  Google Scholar 

  • Reed, A.E., Weinhold, F.: Natural localized molecular orbitals. J. Chem. Phys. 83, 1736–1740 (1985)

    Article  CAS  Google Scholar 

  • Reed, A.E., Weinstock, R.B., Weinhold, F.: Natural population analysis. J. Chem. Phys. 83, 735–746 (1985)

    Article  CAS  Google Scholar 

  • Rezakazemi, M., Ebadi Amooghin, A., Montazer-Rahmati, M.M., Ismail, A.F., Matsuura, T.: State-of-the-art membrane based CO2 separation using mixed matrix membranes (MMMs): an overview on current status and future directions. Prog. Polym. Sci. 39, 817–861 (2014)

    Article  CAS  Google Scholar 

  • Sakamoto, H., Kitaura, R., Matsuda, R., Kitagawa, S., Kubota, Y., Takata, M.: Systematic construction of porous coordination pillared-layer structures and their sorption properties. Chem. Lett. 39, 218–219 (2010)

    Article  CAS  Google Scholar 

  • Simon, S., Duran, M., Dannenberg, J.J.: How does basis set superposition error change the potential surfaces for hydrogen-bonded dimers? J. Chem. Phys. 105, 11024 (1996)

    Article  CAS  Google Scholar 

  • Songolzadeh, M., Ravanchi, M.T., Soleimani, M.: Carbon dioxide capture and storage: a general review on adsorbents. World Acad. Sci. Eng. Technol. 70, 225–232 (2012)

    Google Scholar 

  • Sumida, K., Rogow, D.L., Mason, J.A., McDonald, T.M., Bloch, E.D., Herm, Z.R., Bae, T.-H., Long, J.R.: Carbon dioxide capture in metal-organic frameworks. Chem. Rev. 112, 724–781 (2012)

    Article  CAS  Google Scholar 

  • Uemura, T., Kitaura, R., Ohta, Y., Nagaoka, M., Kitagawa, S.: Nanochannel-promoted polymerization of substituted acetylenes in porous coordination polymers. Angew. Chem. Int. Ed. Engl. 45, 4112–4116 (2006)

    Article  CAS  Google Scholar 

  • Uribe-romo, F.J., Knobler, C.B., Keeffe, M.O., Yaghi, O.M.: Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks. Acc. Chem. Res. 43, 58–67 (2010)

    Article  Google Scholar 

  • Vaidhyanathan, R., Iremonger, S.S., Shimizu, G.K.H., Boyd, P.G., Alavi, S., Woo, T.K.: Direct observation and quantification of CO2 binding within an amine-functionalized nanoporous solid. Science 330, 650–653 (2010)

    Article  CAS  Google Scholar 

  • Varanasi, P.: On the quadrupole moment of CO2. J. Chem. Phys. 53, 4404–4405 (1970)

    Article  CAS  Google Scholar 

  • Vreven, T., Morokuma, K., Farkas, O., Schlegel, H.B., Frisch, M.J.: Geometry optimization with QM/MM, ONIOM, and other combined methods. I. Microiterations and constraints. J. Comput. Chem. 24, 760–769 (2003)

    Article  CAS  Google Scholar 

  • Wang, S., Yang, Q., Zhang, J., Zhang, X., Zhao, C., Jiang, L., Su, C.Y.: Two-dimensional charge-separated metal-organic framework for hysteretic and modulated sorption. Inorg. Chem. 52, 4198–4204 (2013)

    Article  CAS  Google Scholar 

  • Wang, N., Liu, Y., Qiao, Z., Diestel, L., Zhou, J., Huang, A., Caro, J.: Polydopamine-based synthesis of a zeolite imidazolate framework ZIF-100 membrane with high H2/CO2 selectivity. J. Mater. Chem. A. 3, 4722–4728 (2015a)

    Article  CAS  Google Scholar 

  • Wang, W., Zhang, X., Li, P., Sun, Q., Li, Z., Ren, C., Guo, C.: CO2 capture and separation from N2/CH4 mixtures by Co@B8/Co@B8 and M@B9/M@B9 (M = Ir, Rh, Ru) clusters: a theoretical study. J. Phys. Chem. A 119, 796–805 (2015b)

    Article  CAS  Google Scholar 

  • Yamada, H., Matsuzaki, Y., Higashii, T., Kazama, S.: Density functional theory study on carbon dioxide absorption into aqueous solutions of 2-amino-2-methyl-1-propanol using a continuum solvation model. J. Phys. Chem. A 115, 3079–3086 (2011)

    Article  CAS  Google Scholar 

  • Yamada, H., Matsuzaki, Y., Goto, K.: Quantitative spectroscopic study of equilibrium in CO2-loaded aqueous 2-(ethylamino) ethanol solutions. Ind. Eng. Chem. Res. 53, 1617–1623 (2014)

    Article  CAS  Google Scholar 

  • Yang, R.T.: ADSORBENTS Fundamentals and Applications. Wiley, New Jersey (2003)

    Book  Google Scholar 

  • Yu, C.-H.: A review of CO2 capture by absorption and adsorption. Aerosol Air Qual. Res. 12, 745–769 (2012)

    CAS  Google Scholar 

  • Yu, J., Balbuena, P.B.: Water effects on postcombustion CO2 capture in Mg-MOF-74. J. Phys. Chem. C 117, 3383–3388 (2013)

    Article  CAS  Google Scholar 

  • Zhou, C., Cao, L., Wei, S., Zhang, Q., Chen, L.: A first principles study of gas adsorption on charged Cu-BTC. Comput. Theor. Chem. 976, 153–160 (2011)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by NSF-CREST (Grant Number HRD-0833112) and NASA EPSCoR (Grant Number NNX13AD38A). This research used computational resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231, and the High-Performance Computing Facility of the Institute for Functional Nanomaterials, which is supported by NSF through Grants EPS-1002410 and EPS 1010094. The authors thank to Prof. Arturo Hernández-Maldonado and Jose Primera-Pedrozo for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María C. Curet-Arana.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 16827 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meza-Morales, P.J., Santana-Vargas, A. & Curet-Arana, M.C. DFT analysis of coordination polymer ligands: unraveling the electrostatic properties and their effect on CO2 interaction. Adsorption 21, 533–546 (2015). https://doi.org/10.1007/s10450-015-9692-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-015-9692-6

Keywords

Navigation