Skip to main content
Log in

Chemical equilibrium of ion exchange in the binary mixture Cu2+ and Ca2+ in calcium alginate

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

Biopolymer alginate is capable of triggering interchain interactions in the presence of divalent and trivalent cations. Calcium alginate particles obtained by the emulsification method have been used in ion-exchange packed bed tests to remove synthetic copper effluents. Adsorption equilibrium data were obtained from single and binary component systems, which were subsequently subject to mathematical modeling. In the case of the modeling system with binary components, where the calcium was considered as a second ion, there was no significant improvement for the models analyzed, in counterpoise to the isotherm models applied to the single component system. The ideal law of mass action and the law of mass action which presupposed that both phases were non-ideal showed similar results. This process was found to be effective and feasible for industrial applications used to in heavy metal removal processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

a α i :

Activity of the compound i in phase α

A :

Debye Huckel constant

a Cu :

Freundlich constant considering the presence of copper in the binary mixture (L/meq)

a CuCa :

Freundlich constant considering the copper and calcium binary mixture (L/meq)

b :

Parameter associated with the bioadsorbent adsorption capacity (L/meq)

B :

Number of empty sites

B 0 :

Total number of available sites

B ji :

Bromley parameter involving the cation i and the anion j

BCu :

Active sites connected to copper ions

BCa :

Active sites connected to calcium ions

BCuCa :

Active sites connected to copper and calcium ions

C :

Metal solution concentration in equilibrium state (meq/L)

CECavailable :

Available cation exchange capacity (meq/g)

CECTotal :

Total cation exchange capacity (meq/g)

F i :

Sum of interaction parameters

F obj :

Objective function

I :

Ionic length (molal)

K Ca Cu :

Thermodynamic equilibrium constant of the ion exchange reaction between copper and calcium

K d :

Parameter associated with the free energy of biosorption (mg/L)

K Ca :

Langmuir model competition

K CaCu :

Langmuir competition model

K Cu :

Langmuir competition model

K CuCa :

Langmuir competition model

k Cu :

Langmuir power and Lang–Freundlich models

k Ca :

Langmuir power and Lang–Freundlich models

L :

Bed height covered by ionic solution (eq. ad. and des.) (cm)

m i :

Molality of component i (molal)

n :

Parameter associated with the effect of the concentration of metal ions on the adsorption capacity

n i :

Freundlich constant of component i considering a binary mixture

q :

Amount adsorbed (meq/g)

q max :

Maximum amount adsorbed (meq/g)

qi :

Amount of component i adsorbed

r :

Ratio between the amount of adsorbed and desorbed ions of alginate particles

t :

Time (min)

V :

Power flow system in porous bed (mL/min)

y i :

Fraction of component i in solid phase

Z :

Bed height (equation of ratio between ad. and des.) (cm)

z i :

Ionic charge of component i

z ji :

Arithmetic average between cation i and anion j

α′ 11 :

Parameter of Freundlich model for Copper ion

α′ 12 :

Parameter of Freundlich model for Calcium ion

γ (α) i :

Coefficient of fugacity

γ α i :

Activity coefficient of component i in phase α

θ :

Parameter fitted for each model used according to the objective function Fobj, used

Λ ij :

Wilson parameter involving cation i and anion j

A :

Solid phase—alginate

α :

Phase

R :

Solid phase—resin (alginate)

S :

Aqueous phase—solution

* :

Equilibrium

i :

Cation

j :

Anion

n :

Number of components

m :

Number referring to the total test concentration

f :

Copper fraction at a given total concentration

References

  • Allen, R.M., Addison, P.A.: The characterization of binary and ternary ion exchange equilibria. Chem. Eng. J. 40, 151–158 (1989)

    Article  CAS  Google Scholar 

  • Bailey, J.E., Ollis, D.F.: Biochemical, p. 984. Engineering Fundamentals, McGraw-Hill, New York (1986)

    Google Scholar 

  • Bertagnolli, C., Uhart, A., Dupin, J.C., Da Silva, M.G.C., Guibal, E., Desbrieres, J.: Biosorption of chromium by alginate extraction products from Sargassum filipendula: Investigation of adsorption mechanisms using X-ray photoelectron spectroscopy analysis. Bioresour. Technol. 164, 264–269 (2014)

    Article  CAS  Google Scholar 

  • Bromley, L.A.: Thermodynamic properties of strong electrolytes in aqueous solutions. AIChE J. 19(2), 313–320 (1973)

    Article  CAS  Google Scholar 

  • Chen, J.P., Wang, L., Zou, S.W.: Determination of lead biosorption properties by experimental and modeling simulation study. Chem. Eng. J. 131, 209–215 (2007)

    Article  CAS  Google Scholar 

  • Chern, J.M., Chien, Y.W.: Adsorption isotherms of benzoic acid onto activated carbon and breakthrough curves in fixed-bed columns. Ind. Eng. Chem. Res. 40, 3775–3780 (2001)

    Article  CAS  Google Scholar 

  • Chong, K.H., Volesky, B.: Description of two-metal biosorption equilibria by Langmuir type Models. Biotechnol. Bioeng. 47, 451–460 (1995)

    Article  CAS  Google Scholar 

  • Cooney, D.O.: Adsorption design for wastewater treatment. Lewis Publisher, Boca Raton (1999)

    Google Scholar 

  • Davis, T.A., Volesky, B., Mucci, A.: A review of the biochemistry of heavy metal biosorption by brown algae. Water Res. 37, 4311–4330 (2003)

    Article  CAS  Google Scholar 

  • Díaz, E.D.A., Velasco, M.C.V., Pérez, F.R., López, C.A.R., Ibarreta, L.L.: Utilización de adsorbentes baseados en Quitosano y Alginático Sódico para la eliminación de iones metálicos: Cu2+, Pb2+, Cr2+y Co2+. Rev. Iberoam. de Polym. 8(1), 20–37 (2007). (in Spanish)

    Google Scholar 

  • Fundueanu, G., Nastruzzi, C., Carpov, A., Desbrieres, J., Rinauto, M.: Physico-chemical characterization of Ca-alginate microparticles produced with different methods. Biomaterials 20, 1427–1435 (1999)

    Article  CAS  Google Scholar 

  • Hindarso, H., Ismadji, S., Wicaksana, F., Indraswati, N., Mudjijati, : Adsorption of benzene and toluene from aqueous solution onto granular activated carbon. J. Chem. Eng. Data 46, 788–791 (2001)

    Article  CAS  Google Scholar 

  • Jain, J.S., Snoeyink, V.L.: Adsorption from biosolute systems on active carbon. J. Water Pollut. Control Fed. 45, 2463–2479 (1973)

    CAS  Google Scholar 

  • Klein, G., Tondeur, D.: Multicomponent ion exchange in fixed beds. Ind. Eng. Chem. Fundam. 6(3), 39–351 (1967)

    Google Scholar 

  • Kleinübing, S.J.: Bioadsorção competitiva dos íons níquel e cobre em alginato e alga marinha Sargassum filipendula. Doctoral Thesis. School of Chemical Engineering – UNICAMP, Campinas-SP (2009) (in Portuguese)

  • Ko, D.C.K., Porter, J.F., Mckay, G.: Film-pore diffusion model for the fixed bed sorption of copper and cadmium ions onto bone char. Water Res. 35, 3876–3886 (2001)

    Article  CAS  Google Scholar 

  • Kummert, R., Stumm, W.: The surface complexation of organic-acids on hydrous gamma-Al2O3. Colloid Interface Sci. 75, 373–385 (1980)

    Article  CAS  Google Scholar 

  • Lai, Y.L., Annaduarai, G., Huang, F.C., Lee, J.F.: Biosorption of Zn (II) on the different Ca-alginate beads from aqueous solution. Bioresour. Technol. 99, 6480–6487 (2008)

    Article  CAS  Google Scholar 

  • Lee, I.H., Kuan, Y.C., Chern, J.M.: Equilibrium and kinetics of heavy metal ion exchange. J. Chin. Inst. Chem. Eng. 38, 71–84 (2006)

    Article  Google Scholar 

  • Lima, L.K.S., Pelosi, B.T., Kleinübing, S.J., Silva, M.G.C., Vieira, M.G.A.: Avaliação da remoção de íons metálicos utilizando a macrófita aquática Salvinia natans. Proceedings of XXXV Congresso Brasileiro de Sistemas Particulados. São Carlos-SP, Cubo, 1, pp. 145–152 (2012) (in Portuguese)

  • Limons, R. S.: Avaliação do potencial de utilização da macrófita aquática seca Salvinia sp. no tratamento de efluentes de fecularia. Master Thesis, School of Chemical Engineering, State University of West Parana (2008) (in Portuguese)

  • Lin, L.C., Juang, R.S.: Ion-exchange equilibria of Cu(II) and Zn (II) from aqueous solutions with Chelex 100 and Amberlite IRC 748 resins. Chem. Eng. J. 112, 211–218 (2005)

    Article  CAS  Google Scholar 

  • Mishra, V.K., Tripathi, B.D.: Concurrent removal and accumulation of heavy metals by the three aquatic macrophytes. Bioresour. Technol. 99, 7091–7097 (2008)

    Article  CAS  Google Scholar 

  • Mofidi, N., Moghadam, M.A., Sarbolouki, M.N.: Mass preparation and characterization of alginate microspheres. Process Biochem. 35, 885–888 (2000)

    Article  CAS  Google Scholar 

  • Mutlu, M., Sag, Y., Kutsal, T.: The adsorption of copper (II) by Z. ramigera immobilized on Ca-alginate in packed bed columns: a dynamic approach by stimulus-response technique and evaluation of adsorption data by moment analysis. Chem. Eng. J. 65, 81–86 (1997)

    Article  CAS  Google Scholar 

  • Ngah, W.S., Fatinathan, S.: Adsorption of Cu(II) ions in aqueous solution using chitosan beads, chitosan-GLA beads and chitosan-alginate beads. Chem. Eng. J. 143, 62–72 (2008)

    Article  CAS  Google Scholar 

  • Papageorgiou, S.K., Katsaros, F.K., Kouvelos, E.P., Nolan, J.W., Deit, L.H., Kanellopoulos, N.K.: Heavy metal sorption by calcium alginate beads from Laminaria digitata. J. Hazard. Mater. 137, 1765–1772 (2006)

    Article  CAS  Google Scholar 

  • Papageorgiou, S.K., Kouvelos, F.K., Katsaros, F.K.: Calcium alginate beads from Laminaria digitata for theremova of Cu2+ and Cd2+ from dilute aqueous metal solutions. Desalination 224, 293–306 (2008)

    Article  CAS  Google Scholar 

  • Park, H.G., Kim, T.W., Chae, M.Y., Yoo, I.-K.: Activated carbon-containing alginate adsorbent for the simultaneous removal of heavy metals and toxic organics. Process Biochem. 42, 1371–1377 (2007)

    Article  CAS  Google Scholar 

  • Petrus, R., Warchol, J.K.: Ion exchange equilibria between clinoptilolite and aqueous solutions of Na+/Cu2+, Na+/Cd2+ and Na+/Pb2+. Micropor. Mesopor. Mat. 61, 137–146 (2003)

    Article  CAS  Google Scholar 

  • Petrus, R., Warchol, J.K.: Heavy metal removal by clinoptilolite. An equilibrium study in multi-component systems. Water Res. 39, 819–830 (2005)

    Article  CAS  Google Scholar 

  • Pieroni, L.J., Dranoff, J.S.: Ion exchange equilibria in a ternary system. AIChE J. 9(1), 42–45 (1963)

    Article  CAS  Google Scholar 

  • Poncelet, D., Babak, V., Dulieu, C., Picot, A.: A physico-chemical approach to production of alginate beads by emulsification-internal ionotropic gelation. Colloid Surf. A 55(2–3), 171–176 (1999)

    Article  Google Scholar 

  • Prausnitz, J.M., Lichtenthaler, R.N., Azevedo, E.G.: Molecular Thermodynamics of Fluid-Phase Equilibria, 3rd edn, p. 9. Prentice Hall PTR, New Jersey (1999)

    Google Scholar 

  • Preetha, B., Viruthagiri, T.: Batch and continuous biosorptions of chromium (VI) by Rhizopus arrhizus. Sep. Purif. Technol. 57, 126–133 (2007)

    Article  CAS  Google Scholar 

  • Quintelas, C., Fernandes, B., Castro, J., Figueiredo, H., Tavares, T.: Biosorption of Cr(VI) by a Bacillus cagulans biofilm supported on granular activated carbon (GAC). Chem. Eng. J. 136, 195–203 (2008)

    Article  CAS  Google Scholar 

  • Ruthven, D.M.: Principles of Adsorption and Adsorption Process, p. 432. Wiley, New York (1984)

    Google Scholar 

  • Sag, Y., Kaya, A., Kutsal, T.: The simultaneous biosorption of Cu (II) and Zn on Rhizopus arrhizus: application of the adsorption models. Hydrometallurgy 50, 297–314 (1998)

    Article  CAS  Google Scholar 

  • Sánchez, A., Ballester, A., Blásquez, M.L., González, F., Muñoz, J., Hammaini, A.: Biosorption of copper and zinc by Cymodocea nodosa. FEMS Microbiol. Rev. 23, 527–536 (1999)

    Article  Google Scholar 

  • Sanlder, S.I.: Chemical and Engineering Thermodynamics, 3rd edn, p. 7. Wiley, New York (1999)

    Google Scholar 

  • Sheng, P.X., Ting, Y.-P., Chen, J.P., Hong, L.: Sorption of lead, copper, cadmium, zinc and nickel by marine algal biomass: characterization of biosorptive capacity and investigation of mechanisms. J. Colloid Interface Sci. 275, 131–141 (2004)

    Article  CAS  Google Scholar 

  • Silva, F. G. C., Braga, C. G., Lima, L. K. S., Vieira, M. G. A., Silva, M. G. C.: Bioadsorção de Cu2+e Cd2+ utilizando a macrófita aquática Salvinia cucullata. In: Proceedings of Encontro Brasileiro sobre Adsorção (EBA9) & Simpósio Ibero-Americano sobre Adsorção (IBA1), Recife-PE (Itarget) (in Portuguese) (2012)

  • Silva, V. R.: Obtenção de sericina de alta massa molar mediante extração aquosa e ultrafiltração e a avaliação do seu potencial biossortivo. Doctoral Thesis, Federal University of Parana. Curitiba-PR (2013) (in Portuguese)

  • Silva, E.A., Cossich, E.S., Tavares, C.R.G., Cardozo Filho, L., Guirardelo, R.: Modeling of copper biosorption by marine alga Sargassum sp. in fixed bed column. Process Biochem. 38, 791–799 (2002)

    Article  Google Scholar 

  • Smith, R., Woodburn, W.: Prediction of multicomponent ion exchange equilibria for the ternay system So 24 –NO3–Cl from data of binary systems. AIChE J. 24, 577–587 (1978)

    Article  CAS  Google Scholar 

  • Tu, J., Bolla, S., Barr, J., Miedema, J., Li, X., Jasti, B.: Alginate microparticles prepared by spray-coagulation method: preparation, drug loading and release characterization. Int. J. Pharm. 303, 171–181 (2005)

    Article  CAS  Google Scholar 

  • Veglio, F., Esposito, A., Reverberi, A.P.: Copper adsorption on calcium alginate beads: equilibrium pH-related models. Hydrometallurgy 65, 43–57 (2002)

    Article  CAS  Google Scholar 

  • Vieira, R. S.: Adsorção competitiva dos íons cobre e mercúrio em membranas de quitosana natural e reticulada. Doctoral Thesis. School of Chemical Engineering - UNICAMP, Campinas-SP (2008) (in Portuguese)

  • Vieira, M.G.A., Oisiovici, R., Gimenes, M., Silva, M.: Biosorption of chromium(VI) using a Sargassum sp. packed-bed column. Bioresour. Technol. 99, 3094–3099 (2008)

    Article  CAS  Google Scholar 

  • Vieira, M.G.A., Almeida Neto, A.F., Nóbrega, C.C., Melo Filho, A.A., Silva, M.G.C.: Characterization and use of in natura and calcined rice husks for biosorption of heavy metals ions from aqueous Effluents. Braz. J. Chem. Eng. 29, 619–633 (2012)

    Article  CAS  Google Scholar 

  • Volesky, B., Kratochvil, D.: Advances in biosorption of heavy metals. Trends Biotechnol. 16, 291–300 (1998)

    Article  Google Scholar 

  • Weber Jr, W.J., Wang, C.K.A.: Microscale System for Estimation of Model Parameters for Fixed Bed Adsorbers. Environ. Sci. Technol. 21, 1050–1096 (1987)

    Google Scholar 

  • Yoshida, H., Yoshikawa, M., Kataoka, T.: Parallel transport of BSA by surface and pore diffusion in strongly basic chitosan. AIChE J. 40, 2034–2044 (1994)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support received from FAPESP and CNPq for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. G. A. Vieira.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva, M.G.C., Canevesi, R.L.S., Welter, R.A. et al. Chemical equilibrium of ion exchange in the binary mixture Cu2+ and Ca2+ in calcium alginate. Adsorption 21, 445–458 (2015). https://doi.org/10.1007/s10450-015-9682-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-015-9682-8

Keywords

Navigation