Chemical equilibrium of ion exchange in the binary mixture Cu2+ and Ca2+ in calcium alginate
- 323 Downloads
- 3 Citations
Abstract
Biopolymer alginate is capable of triggering interchain interactions in the presence of divalent and trivalent cations. Calcium alginate particles obtained by the emulsification method have been used in ion-exchange packed bed tests to remove synthetic copper effluents. Adsorption equilibrium data were obtained from single and binary component systems, which were subsequently subject to mathematical modeling. In the case of the modeling system with binary components, where the calcium was considered as a second ion, there was no significant improvement for the models analyzed, in counterpoise to the isotherm models applied to the single component system. The ideal law of mass action and the law of mass action which presupposed that both phases were non-ideal showed similar results. This process was found to be effective and feasible for industrial applications used to in heavy metal removal processes.
Keywords
Ion exchange Copper Calcium alginate ModelingList of symbols
- aiα
Activity of the compound i in phase α
- A
Debye Huckel constant
- aCu
Freundlich constant considering the presence of copper in the binary mixture (L/meq)
- aCu–Ca
Freundlich constant considering the copper and calcium binary mixture (L/meq)
- b
Parameter associated with the bioadsorbent adsorption capacity (L/meq)
- B
Number of empty sites
- B0
Total number of available sites
- Bji
Bromley parameter involving the cation i and the anion j
- B–Cu
Active sites connected to copper ions
- B–Ca
Active sites connected to calcium ions
- B–Cu–Ca
Active sites connected to copper and calcium ions
- C
Metal solution concentration in equilibrium state (meq/L)
- CECavailable
Available cation exchange capacity (meq/g)
- CECTotal
Total cation exchange capacity (meq/g)
- Fi
Sum of interaction parameters
- Fobj
Objective function
- I
Ionic length (molal)
- KCuCa
Thermodynamic equilibrium constant of the ion exchange reaction between copper and calcium
- Kd
Parameter associated with the free energy of biosorption (mg/L)
- KCa
Langmuir model competition
- KCa–Cu
Langmuir competition model
- KCu
Langmuir competition model
- KCu–Ca
Langmuir competition model
- kCu
Langmuir power and Lang–Freundlich models
- kCa
Langmuir power and Lang–Freundlich models
- L
Bed height covered by ionic solution (eq. ad. and des.) (cm)
- mi
Molality of component i (molal)
- n
Parameter associated with the effect of the concentration of metal ions on the adsorption capacity
- ni
Freundlich constant of component i considering a binary mixture
- q
Amount adsorbed (meq/g)
- qmax
Maximum amount adsorbed (meq/g)
- qi
Amount of component i adsorbed
- r
Ratio between the amount of adsorbed and desorbed ions of alginate particles
- t
Time (min)
- V
Power flow system in porous bed (mL/min)
- yi
Fraction of component i in solid phase
- Z
Bed height (equation of ratio between ad. and des.) (cm)
- zi
Ionic charge of component i
- zji
Arithmetic average between cation i and anion j
Greek
- α′11
Parameter of Freundlich model for Copper ion
- α′12
Parameter of Freundlich model for Calcium ion
- γi(α)
Coefficient of fugacity
- γiα
Activity coefficient of component i in phase α
- θ
Parameter fitted for each model used according to the objective function Fobj, used
- Λij
Wilson parameter involving cation i and anion j
Superscripts
- A
Solid phase—alginate
- α
Phase
- R
Solid phase—resin (alginate)
- S
Aqueous phase—solution
- *
Equilibrium
Subscripts
- i
Cation
- j
Anion
- n
Number of components
- m
Number referring to the total test concentration
- f
Copper fraction at a given total concentration
Notes
Acknowledgments
The authors would like to acknowledge the financial support received from FAPESP and CNPq for this research.
References
- Allen, R.M., Addison, P.A.: The characterization of binary and ternary ion exchange equilibria. Chem. Eng. J. 40, 151–158 (1989)CrossRefGoogle Scholar
- Bailey, J.E., Ollis, D.F.: Biochemical, p. 984. Engineering Fundamentals, McGraw-Hill, New York (1986)Google Scholar
- Bertagnolli, C., Uhart, A., Dupin, J.C., Da Silva, M.G.C., Guibal, E., Desbrieres, J.: Biosorption of chromium by alginate extraction products from Sargassum filipendula: Investigation of adsorption mechanisms using X-ray photoelectron spectroscopy analysis. Bioresour. Technol. 164, 264–269 (2014)CrossRefGoogle Scholar
- Bromley, L.A.: Thermodynamic properties of strong electrolytes in aqueous solutions. AIChE J. 19(2), 313–320 (1973)CrossRefGoogle Scholar
- Chen, J.P., Wang, L., Zou, S.W.: Determination of lead biosorption properties by experimental and modeling simulation study. Chem. Eng. J. 131, 209–215 (2007)CrossRefGoogle Scholar
- Chern, J.M., Chien, Y.W.: Adsorption isotherms of benzoic acid onto activated carbon and breakthrough curves in fixed-bed columns. Ind. Eng. Chem. Res. 40, 3775–3780 (2001)CrossRefGoogle Scholar
- Chong, K.H., Volesky, B.: Description of two-metal biosorption equilibria by Langmuir type Models. Biotechnol. Bioeng. 47, 451–460 (1995)CrossRefGoogle Scholar
- Cooney, D.O.: Adsorption design for wastewater treatment. Lewis Publisher, Boca Raton (1999)Google Scholar
- Davis, T.A., Volesky, B., Mucci, A.: A review of the biochemistry of heavy metal biosorption by brown algae. Water Res. 37, 4311–4330 (2003)CrossRefGoogle Scholar
- Díaz, E.D.A., Velasco, M.C.V., Pérez, F.R., López, C.A.R., Ibarreta, L.L.: Utilización de adsorbentes baseados en Quitosano y Alginático Sódico para la eliminación de iones metálicos: Cu2+, Pb2+, Cr2+y Co2+. Rev. Iberoam. de Polym. 8(1), 20–37 (2007). (in Spanish) Google Scholar
- Fundueanu, G., Nastruzzi, C., Carpov, A., Desbrieres, J., Rinauto, M.: Physico-chemical characterization of Ca-alginate microparticles produced with different methods. Biomaterials 20, 1427–1435 (1999)CrossRefGoogle Scholar
- Hindarso, H., Ismadji, S., Wicaksana, F., Indraswati, N., Mudjijati, : Adsorption of benzene and toluene from aqueous solution onto granular activated carbon. J. Chem. Eng. Data 46, 788–791 (2001)CrossRefGoogle Scholar
- Jain, J.S., Snoeyink, V.L.: Adsorption from biosolute systems on active carbon. J. Water Pollut. Control Fed. 45, 2463–2479 (1973)Google Scholar
- Klein, G., Tondeur, D.: Multicomponent ion exchange in fixed beds. Ind. Eng. Chem. Fundam. 6(3), 39–351 (1967)Google Scholar
- Kleinübing, S.J.: Bioadsorção competitiva dos íons níquel e cobre em alginato e alga marinha Sargassum filipendula. Doctoral Thesis. School of Chemical Engineering – UNICAMP, Campinas-SP (2009) (in Portuguese)Google Scholar
- Ko, D.C.K., Porter, J.F., Mckay, G.: Film-pore diffusion model for the fixed bed sorption of copper and cadmium ions onto bone char. Water Res. 35, 3876–3886 (2001)CrossRefGoogle Scholar
- Kummert, R., Stumm, W.: The surface complexation of organic-acids on hydrous gamma-Al2O3. Colloid Interface Sci. 75, 373–385 (1980)CrossRefGoogle Scholar
- Lai, Y.L., Annaduarai, G., Huang, F.C., Lee, J.F.: Biosorption of Zn (II) on the different Ca-alginate beads from aqueous solution. Bioresour. Technol. 99, 6480–6487 (2008)CrossRefGoogle Scholar
- Lee, I.H., Kuan, Y.C., Chern, J.M.: Equilibrium and kinetics of heavy metal ion exchange. J. Chin. Inst. Chem. Eng. 38, 71–84 (2006)CrossRefGoogle Scholar
- Lima, L.K.S., Pelosi, B.T., Kleinübing, S.J., Silva, M.G.C., Vieira, M.G.A.: Avaliação da remoção de íons metálicos utilizando a macrófita aquática Salvinia natans. Proceedings of XXXV Congresso Brasileiro de Sistemas Particulados. São Carlos-SP, Cubo, 1, pp. 145–152 (2012) (in Portuguese)Google Scholar
- Limons, R. S.: Avaliação do potencial de utilização da macrófita aquática seca Salvinia sp. no tratamento de efluentes de fecularia. Master Thesis, School of Chemical Engineering, State University of West Parana (2008) (in Portuguese)Google Scholar
- Lin, L.C., Juang, R.S.: Ion-exchange equilibria of Cu(II) and Zn (II) from aqueous solutions with Chelex 100 and Amberlite IRC 748 resins. Chem. Eng. J. 112, 211–218 (2005)CrossRefGoogle Scholar
- Mishra, V.K., Tripathi, B.D.: Concurrent removal and accumulation of heavy metals by the three aquatic macrophytes. Bioresour. Technol. 99, 7091–7097 (2008)CrossRefGoogle Scholar
- Mofidi, N., Moghadam, M.A., Sarbolouki, M.N.: Mass preparation and characterization of alginate microspheres. Process Biochem. 35, 885–888 (2000)CrossRefGoogle Scholar
- Mutlu, M., Sag, Y., Kutsal, T.: The adsorption of copper (II) by Z. ramigera immobilized on Ca-alginate in packed bed columns: a dynamic approach by stimulus-response technique and evaluation of adsorption data by moment analysis. Chem. Eng. J. 65, 81–86 (1997)CrossRefGoogle Scholar
- Ngah, W.S., Fatinathan, S.: Adsorption of Cu(II) ions in aqueous solution using chitosan beads, chitosan-GLA beads and chitosan-alginate beads. Chem. Eng. J. 143, 62–72 (2008)CrossRefGoogle Scholar
- Papageorgiou, S.K., Katsaros, F.K., Kouvelos, E.P., Nolan, J.W., Deit, L.H., Kanellopoulos, N.K.: Heavy metal sorption by calcium alginate beads from Laminaria digitata. J. Hazard. Mater. 137, 1765–1772 (2006)CrossRefGoogle Scholar
- Papageorgiou, S.K., Kouvelos, F.K., Katsaros, F.K.: Calcium alginate beads from Laminaria digitata for theremova of Cu2+ and Cd2+ from dilute aqueous metal solutions. Desalination 224, 293–306 (2008)CrossRefGoogle Scholar
- Park, H.G., Kim, T.W., Chae, M.Y., Yoo, I.-K.: Activated carbon-containing alginate adsorbent for the simultaneous removal of heavy metals and toxic organics. Process Biochem. 42, 1371–1377 (2007)CrossRefGoogle Scholar
- Petrus, R., Warchol, J.K.: Ion exchange equilibria between clinoptilolite and aqueous solutions of Na+/Cu2+, Na+/Cd2+ and Na+/Pb2+. Micropor. Mesopor. Mat. 61, 137–146 (2003)CrossRefGoogle Scholar
- Petrus, R., Warchol, J.K.: Heavy metal removal by clinoptilolite. An equilibrium study in multi-component systems. Water Res. 39, 819–830 (2005)CrossRefGoogle Scholar
- Pieroni, L.J., Dranoff, J.S.: Ion exchange equilibria in a ternary system. AIChE J. 9(1), 42–45 (1963)CrossRefGoogle Scholar
- Poncelet, D., Babak, V., Dulieu, C., Picot, A.: A physico-chemical approach to production of alginate beads by emulsification-internal ionotropic gelation. Colloid Surf. A 55(2–3), 171–176 (1999)CrossRefGoogle Scholar
- Prausnitz, J.M., Lichtenthaler, R.N., Azevedo, E.G.: Molecular Thermodynamics of Fluid-Phase Equilibria, 3rd edn, p. 9. Prentice Hall PTR, New Jersey (1999)Google Scholar
- Preetha, B., Viruthagiri, T.: Batch and continuous biosorptions of chromium (VI) by Rhizopus arrhizus. Sep. Purif. Technol. 57, 126–133 (2007)CrossRefGoogle Scholar
- Quintelas, C., Fernandes, B., Castro, J., Figueiredo, H., Tavares, T.: Biosorption of Cr(VI) by a Bacillus cagulans biofilm supported on granular activated carbon (GAC). Chem. Eng. J. 136, 195–203 (2008)CrossRefGoogle Scholar
- Ruthven, D.M.: Principles of Adsorption and Adsorption Process, p. 432. Wiley, New York (1984)Google Scholar
- Sag, Y., Kaya, A., Kutsal, T.: The simultaneous biosorption of Cu (II) and Zn on Rhizopus arrhizus: application of the adsorption models. Hydrometallurgy 50, 297–314 (1998)CrossRefGoogle Scholar
- Sánchez, A., Ballester, A., Blásquez, M.L., González, F., Muñoz, J., Hammaini, A.: Biosorption of copper and zinc by Cymodocea nodosa. FEMS Microbiol. Rev. 23, 527–536 (1999)CrossRefGoogle Scholar
- Sanlder, S.I.: Chemical and Engineering Thermodynamics, 3rd edn, p. 7. Wiley, New York (1999)Google Scholar
- Sheng, P.X., Ting, Y.-P., Chen, J.P., Hong, L.: Sorption of lead, copper, cadmium, zinc and nickel by marine algal biomass: characterization of biosorptive capacity and investigation of mechanisms. J. Colloid Interface Sci. 275, 131–141 (2004)CrossRefGoogle Scholar
- Silva, F. G. C., Braga, C. G., Lima, L. K. S., Vieira, M. G. A., Silva, M. G. C.: Bioadsorção de Cu2+e Cd2+ utilizando a macrófita aquática Salvinia cucullata. In: Proceedings of Encontro Brasileiro sobre Adsorção (EBA9) & Simpósio Ibero-Americano sobre Adsorção (IBA1), Recife-PE (Itarget) (in Portuguese) (2012)Google Scholar
- Silva, V. R.: Obtenção de sericina de alta massa molar mediante extração aquosa e ultrafiltração e a avaliação do seu potencial biossortivo. Doctoral Thesis, Federal University of Parana. Curitiba-PR (2013) (in Portuguese)Google Scholar
- Silva, E.A., Cossich, E.S., Tavares, C.R.G., Cardozo Filho, L., Guirardelo, R.: Modeling of copper biosorption by marine alga Sargassum sp. in fixed bed column. Process Biochem. 38, 791–799 (2002)CrossRefGoogle Scholar
- Smith, R., Woodburn, W.: Prediction of multicomponent ion exchange equilibria for the ternay system So42–NO3–Cl from data of binary systems. AIChE J. 24, 577–587 (1978)CrossRefGoogle Scholar
- Tu, J., Bolla, S., Barr, J., Miedema, J., Li, X., Jasti, B.: Alginate microparticles prepared by spray-coagulation method: preparation, drug loading and release characterization. Int. J. Pharm. 303, 171–181 (2005)CrossRefGoogle Scholar
- Veglio, F., Esposito, A., Reverberi, A.P.: Copper adsorption on calcium alginate beads: equilibrium pH-related models. Hydrometallurgy 65, 43–57 (2002)CrossRefGoogle Scholar
- Vieira, R. S.: Adsorção competitiva dos íons cobre e mercúrio em membranas de quitosana natural e reticulada. Doctoral Thesis. School of Chemical Engineering - UNICAMP, Campinas-SP (2008) (in Portuguese)Google Scholar
- Vieira, M.G.A., Oisiovici, R., Gimenes, M., Silva, M.: Biosorption of chromium(VI) using a Sargassum sp. packed-bed column. Bioresour. Technol. 99, 3094–3099 (2008)CrossRefGoogle Scholar
- Vieira, M.G.A., Almeida Neto, A.F., Nóbrega, C.C., Melo Filho, A.A., Silva, M.G.C.: Characterization and use of in natura and calcined rice husks for biosorption of heavy metals ions from aqueous Effluents. Braz. J. Chem. Eng. 29, 619–633 (2012)CrossRefGoogle Scholar
- Volesky, B., Kratochvil, D.: Advances in biosorption of heavy metals. Trends Biotechnol. 16, 291–300 (1998)CrossRefGoogle Scholar
- Weber Jr, W.J., Wang, C.K.A.: Microscale System for Estimation of Model Parameters for Fixed Bed Adsorbers. Environ. Sci. Technol. 21, 1050–1096 (1987)Google Scholar
- Yoshida, H., Yoshikawa, M., Kataoka, T.: Parallel transport of BSA by surface and pore diffusion in strongly basic chitosan. AIChE J. 40, 2034–2044 (1994)CrossRefGoogle Scholar