Advertisement

Adsorption

, Volume 21, Issue 5, pp 343–351 | Cite as

Na+/Cu2+ ion exchange equilibrium on Zeolite A: a thermodynamic study

  • St. PerişanuEmail author
  • Ana-Maria Oancea
Article

Abstract

The ion exchange isotherms at 302 K for Na+/Cu2+ and Cu2+/Na+ on zeolite A were determined for six total equivalent concentrations of the external solution, in the range 0.05–2.1 eq/L. Interpolated points from the curves fitted with different isotherms were used in the calculation of the selectivity coefficients. The activity coefficients in the external solution were calculated by means of the Pitzer model. Thermodynamic equilibrium constant values corresponding to different total concentrations of the external solution have been obtained investigating the reaction from both sides. The method of Gaines and Thomas, revised by Soldatov, based on the dependence of the normalized Kielland selectivity quotients on the copper ionic fraction in the zeolite was used in order to obtain the thermodynamic equilibrium constant value. The significance of the thermodynamic equilibrium constant and the reversibility of the process were analyzed, as well as the influence of the non-ideality of the zeolite and solution phases.

Keywords

Ion exchange Equilibrium constant Adsorption isotherm Zeolite A 

List of symbols

a

Coefficient in isotherm equations, thermodynamic activity in solution

\( \bar{a} \)

Thermodynamic activity in zeolite

b

Coefficient in isotherm equations

c

Coefficient in isotherm equation (Keller)

fγ

Debye–Hückel term, in the equation for the activity coefficient

m

Molality

r

R-squared coefficient

x

Ionic fraction in solution

\( \bar{x} \)

Ionic fraction in zeolite

z

Number of elementary charges of an ion

B

Second virial coefficient in the Debye equation for activity coeffiecients

C

Third virial coefficient in the Debye equation for activity coeffiecients

F

Test value for errors

K

Thermodynamic equilibrium constant

\( \tilde{K} \)

Corrected selectivity quotient

γ

Activity coefficient in solution

γ’

Activity coefficient in zeolite

ν

Number of ions in an electrolyte

Subscripts

a

Index for anion

c

Index for cation

i

Index for ion

M

A certain cation

X

A certain anion

±

Mean ionic

References

  1. Tanaka, Y., Tsuji, M., Tamaura, Y.: ESCA and thermodynamic studies of alkali metal ion exchange reactions on an α-MnO2 phase with the tunnel structure. Phys. Chem. Chem. Phys. 2, 1473–1479 (2000)CrossRefGoogle Scholar
  2. Kuronen, M., Harjula, R., Jernström, J., Vestenius, M., Lehto, J.: Effect of the framework charge density on zeolite ion exchange selectivities. Phys. Chem. Chem. Phys. 2, 2655–2659 (2000)CrossRefGoogle Scholar
  3. Altschuler, G.N., Ostapova, E.V., Sapozhnikova, L.A., Altshuler, O.G.: Thermodynamics of ion exchange of H+ by Na+ or NH4 + on ion-exchange resins based on C-tetramethylcalix[4] resorcinarene. Russ. Chem. Bull. 53, 2670–2673 (2004)CrossRefGoogle Scholar
  4. Boyd, G.E., Myers, G.E., Lindenbaum, S.: Thermodynamic calculations of equilibrium constants for ion-exchange reactions between unequally charged cations in polyelectrolyte gels. J. Phys. Chem. 78, 1110–1120 (1974)CrossRefGoogle Scholar
  5. Chen, S.H., Chao, K.J., Lee, T.Y.: Lanthanum -NaY zeolite ion exchange. 1. thermodynamics and thermochemistry. IEC Res. 29, 2020–2023 (1990)Google Scholar
  6. de Barros, M.A.S.D., Zola, A.S., Arroyo, P.A., Sousa-Agular, E.F., Granhen Tavares, C.R.: Equilibrium and dynamic ion exchange studies of Cr3+ on zeolites NaA and NaX. Acta Scient. 24, 1619–1625 (2002)Google Scholar
  7. Heo, N.H., Kim, Y., Lin, G.C.H., Seff, C.: Three Binary Ion-exchange Isotherms in Zeolite-A: Cs+- Ag+, Ag+- Na+, and NH4 +- Na+. Bull. Korean Chem. Soc. 11, 407–410 (1990)Google Scholar
  8. Valverde, J.L., de Lucas, A., Gonzales, M., Rodriguez, J.F.: Ion-exchange equilibria of Cu2+, Cd2+, Zn2+, and Na+ ions on the cationic exchanger Amberlite IR-120. J. Chem. Eng. Data 46, 1404–1409 (2001)CrossRefGoogle Scholar
  9. Carmona, M., Warchoł, J., de Lucas, A., Rodriguez, J.F.: Ion-exchange equilibria of Pb2+, Ni2+, and Cr3+ ions for H+ on Amberlite IR-120 Resin. J. Chem. Eng. Data 53, 1325–1331 (2008)CrossRefGoogle Scholar
  10. Borge, G., Arana, G., Fernandez, L.A., Madariaga, J.M.: Determination of ion exchange equilibrium constants of strongly acidic resins with alkaline-earth metals by means of the potentiometric titrations technique. Talanta 48, 91–102 (1999)CrossRefGoogle Scholar
  11. Sherry, H.S., Walton, H.F.: The ion-exchange properties of zeolites. II. Ion exchange in the synthetic zeolite Linde 4A. J. Phys. Chem. 71, 1457–1465 (1967)CrossRefGoogle Scholar
  12. Miyata, S.: Anion exchange properties of Hydracalcite-like compounds. Clays Clay Miner. 31, 305–311 (1983)CrossRefGoogle Scholar
  13. de Lucas, A., Martínez, P., Cañizares, J.: Zarca Díaz, Binary ion exchange equilibrium for Ca2+, Mg2+, K+, Na+ and H+ ions on Amberlite IR-120. Chem. Eng. Technol. 16, 35–39 (1993)CrossRefGoogle Scholar
  14. Barrer, R.M., Klinowski, J.: Ion exchange involving several groups of homogeneous sites. J. Chem. Soc. Faraday Trans. 1(68), 73–87 (1972)CrossRefGoogle Scholar
  15. Barrer, R.M., Rees, L.V.C., Shamsuzzoha, M.: Thermochemistry and thermodynamics of ion exchange in a near-faujasite. J. Inorg. Nucl. Chem. 28, 629–643 (1966)CrossRefGoogle Scholar
  16. Barrer, R.M., Davies, J.A., Rees, L.V.C.: Thermodynamics and thermochemistry of cation exchange in zeolite Y. J. Inorg. Nucl. Chem. 30, 3333–3349 (1968)CrossRefGoogle Scholar
  17. Barrer, R.M., Davies, J.A., Rees, L.V.C.: Thermodynamics and thermochemistry of cation exchange in chabazite. J. Inorg. Nucl. Chem. 31, 219–232 (1969)CrossRefGoogle Scholar
  18. Barrer, R.M., Klinowski, J.: Ion exchange in mordenite. J. Chem. Soc., Faraday Trans. 70, 2362–2367 (1974a)CrossRefGoogle Scholar
  19. Barrer, R.M., Klinowski, J.: Ion-exchange selectivity and electrolyte concentration. J. Chem. Soc. Faraday Trans. 1(70), 2080–2091 (1974b)CrossRefGoogle Scholar
  20. Adams, C.J., Araya, A., Cunningham, K.J., Franklin, K.R., White, I.F.: Measurement and prediction of CaNa ion-exchange equilibrium in maximum aluminium P (MAP), a zeolite with the GIS framework topology. J. Chem. Soc. Faraday Trans. 93, 499–503 (1997)CrossRefGoogle Scholar
  21. Tagami, L., dos Santos, O.A.A., Sousa-Agular, E.F., Arroyo, P.A., de Barros, M.A.S.D.: NaY and CrY zeolites ion exchange thermodynamics. Acta Scient. 23, 1351–1357 (2001)Google Scholar
  22. Sherry, H.S.: The ion exchange properties of Zeolites. IV.Alkaline earth ion exchange in the synthetic Zeolites Linde X and Y. J. Phys. Chem. 72, 4086–4093 (1968)CrossRefGoogle Scholar
  23. Barrer, R.M., Klinowski, J., Sherry, H.S.: Zeolite exchangers. thermodynamic treatment when not all ions are exchangeable. J. Chem. Soc. Faraday Trans. 2(69), 1669–1676 (1973)CrossRefGoogle Scholar
  24. Vansant, E.F., Uytterhoeven, J.B.: Ion exchange in synthetic zeolites. Part 2. - thermodynamic formalism for incomplete exchange. Trans. Faraday Soc. 67, 2961–2969 (1971)CrossRefGoogle Scholar
  25. Singare, P.U., Lokhande, R.S., Samant, N.: Studies of Uni-univalent ion exchange reactions using strongly acidic cation exchange resin Amberlite IR-120. Nat. Sci. 1, 124–128 (2008a)Google Scholar
  26. Singare, P.U., Lokhande, R.S., Prabhavalkar, T.S.: Ion exchange equilibrium for some Uni-univalent and Uni-divalent reaction systems using strongly basic anion exchange resin Duolite A-102 D. Bull. Chem. Soc. Ethiop. 22, 415–421 (2008b)Google Scholar
  27. Singare, P.U., Lokhande, R.S., Patil, M.G.: Ion exchange equilibrium studies using strongly acidic cation exchange resins Duolite ARC 9351, RASAYAN. J. Chem. 2, 566–571 (2009)Google Scholar
  28. Lokhande, R.S., Singare, P.U., Patil, A.B.: A study of ion exchange equilibrium for some uni-univalent and uni-divalent reaction systems using strongly basic anion exchange resin Indion-830 (Type 1). Russ. J. Phys. Chem. 81, 2059–2063 (2007)CrossRefGoogle Scholar
  29. Lokhande, R.S., Singare, P.U., Dole, M.H.: Study on ion exchange equilibrium for some Uni_univalent and Uni_divalent reaction systems using strongly basic anion_exchange resin Duolite A_113. Russ. J. Phys. Chem. A 83, 2313–2317 (2009)CrossRefGoogle Scholar
  30. Ioannidis, S., Anderko, A., Sanders, S.: Internally consistent representation of binary ion exchange equilibria. Chem. Eng. Sci. 55, 2687–2698 (2000)CrossRefGoogle Scholar
  31. Pabalan, T.R.: Thermodynamics of ion exchange between clinoptilolite and aqueous solutions of Na+/K+ and Na+/Ca2+. Geochim. Cosmochim. Acta 58, 4573–4590 (1994)CrossRefGoogle Scholar
  32. Ferapontov, N.B., Gorshkov, V.I., Parbuzina, L.R., Struskovskaia, N.L., Gagarin, A.N.: Thermodynamics of interphase equilibrium in system ion exchanger-solution of low molecular weight electrolyte. React. Funct. Polym. 66, 1749–1756 (2006)CrossRefGoogle Scholar
  33. Ferapontov, N.B., Parbuzina, L.R., Gorshkov, V.I., Strusovskaya, N.L., Gagarin, A.N.: Interaction of cross-linked polyelectrolytes with solutions of low-molecular-weight electrolytes. React. Funct. Polym. 45, 145–153 (2000)CrossRefGoogle Scholar
  34. Barrer, R.M., Meier, W.M.: Exchange equilibria in a synthetic crystalline exchanger. Trans. Faraday Soc. 55, 130–141 (1959)CrossRefGoogle Scholar
  35. Ziyath, A.M., Mahbub, P., Goonetilleke, A., Adebajo, M.O., Kokot, S., Oloyede, A.: Influence of physical and chemical parameters on the treatment of heavy metals in polluted stormwater using Zeolite—a review. J. Water Resour Prot. 3, 758–767 (2011)CrossRefGoogle Scholar
  36. Helfferich, F.: Ion Exchange. Dover Publication Inc., New York (1995)Google Scholar
  37. Pitzer, K.S., Kim, J.J.: Thermodynamics of electrolytes. IV. Activity and osmotic coefficients for mixed electrolytes. J. Amer. Chem. Soc. 96(18), 5701–5707 (1974)CrossRefGoogle Scholar
  38. Gaines, G.L., Thomas, H.C.: Adsorption Studies on Clay Minerals. II. A formulation of the thermodynamics of exchange adsorption. J. Chem. Phys. 21, 714–718 (1953)CrossRefGoogle Scholar
  39. Soldatov, V.S.: Application of basic concepts of chemical thermodynamics to ion exchange equilibria. React. Funct. Polym. 27, 95–106 (1995)CrossRefGoogle Scholar
  40. Ekedahl, E., Hogfeldt, E., Sillen, L.G.: Activities of the Components in Ion exchangers. Acta Chem. Scand. 4, 556–558 (1950a)CrossRefGoogle Scholar
  41. Ekedahl, E., Hogfeldt, E., Sillen, L.G.: Activities of the components in ion exchangers with multivalent ions. Acta Chem. Scand. 4, 828–830 (1950b)CrossRefGoogle Scholar
  42. Wilson, G.M.: Vapor-liquid equilibria XI. A new expression for the excess free energy of mixing. J. Am. Chem. Soc. 86, 127–130 (1964)CrossRefGoogle Scholar
  43. Smith, R.P., Woodburn, E.T.: Prediction of multicomponent ion exchange equilibria for the ternary system SO 42−-NO 3−-Cl from data of binary systems. AIChE J. 24(4), 577–587 (1978)CrossRefGoogle Scholar
  44. Ruvarac, A.L., Petković, D.M.: Determination of the thermodynamic equilibrium constants of ion exchange processes. J. Chem. Soc. Dalton Trans. 10, 2565–2567 (1988)CrossRefGoogle Scholar
  45. Ruvarac, A.L.: Determination of the thermodynamic equilibrium constants of ion exchange processes. Mat. Chem. Phys. 35, 247–249 (1993)CrossRefGoogle Scholar
  46. Adolphs, J., Setzer, M.J.: Energetic classification of adsorption isotherms. J. Colloid Interface Sci. 184, 443–448 (1996)CrossRefGoogle Scholar
  47. Townsend, R.P.: Ion Exchange in Zeolites. In: Van Bekkum, H., Flanigen, E.M., Jansen, J.C. (eds.) Introduction to zeolite science and practice. Elsevier, Amsterdam (1991)Google Scholar
  48. Do, D.D.: Adsorption Analysis: Equilibria and Kinetics. Imperial College Press, London (1998)Google Scholar
  49. Assessment Model for Environmental Systems: Version 4.0 User’s Manual (1999) United States Environmental Protection Agency, Office of Research and Development, Washington DC.Google Scholar
  50. Rida, K., Goutas, K., Medjetena, I.: Etude de l’élimination des ions Cu (II) de la solution aqueuse par sorption sur la Zéolithe A. Canad. J. Chem. Eng. 90, 1269–1277 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of General ChemistryUniversity “Politehnica” of BucharestBucharestRomania
  2. 2.Department of Inorganic Chemistry, Physical Chemistry and ElectrochemistryUniversity “Politehnica” of BucharestBucharestRomania

Personalised recommendations