Skip to main content
Log in

Dose-dependent isotherm of Kr adsorption on heterogeneous bundles of closed single-walled carbon nanotubes

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

We present 77 K isotherms of krypton adsorption on bundles of closed highly-pure HiPco single-walled carbon nanotubes (SWCNTs). Two volumetric adsorption protocols were used, one with an increasing Kr dose per injection (IAD), one with a constant dose (CAD). Detailed microstructural examination showed that the SWCNTs combine into small bundles (of 25–30 SWCNTs) which are heterogeneous in diameter with a consequential range of interstitial channel (IC) shapes and sizes. The IC-sites are the subnanoscaled pores with alternating enlargements and constrictions along the tube axes. This results in adsorption dosing (AD) dependent characteristics of the low-pressure region of the isotherm. In the IAD protocol the switch-back behavior of the isotherm stemmed from metastable adsorption. Using the CAD protocol, different branches are observed. Well-pronounced substeps were established which we interpret as corresponding to the formation of various phases of confined Kr with different atoms arrangement. The height of a given substep obtained in different measurements depends on the AD value which can strongly influence the population of the site. Some substeps existing only for certain values of AD suggests the existence of a certain selectivity or of a preferential phase formation according to this value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abrams, Z.R., Hanein, Y.: Radial deformation measurements of isolated pairs of single-walled carbon nanotubes. Carbon 45(4), 738–743 (2007)

    Article  CAS  Google Scholar 

  • Arab, M., Picaud, F., Ramseyer, C., Babaa, M.R., Valsaque, F., McRae, E.: Determination of the single wall carbon nanotube opening ratio by means of rare gas adsorption. Chem. Phys. Lett. 423(1–3), 183–186 (2006)

    Article  CAS  Google Scholar 

  • Arab, M., Picaud, F., Ramseyer, C., Baaba, M.R., Valsaque, F., McRae, E.: Characterization of single wall carbon nanotubes by means of rare gas adsorption. J. Chem. Phys. 126(5), 054709 (2007)

    Article  CAS  Google Scholar 

  • Babaa, M.R., Stepanek, I., Masenelli-Varlot, K., Dupont-Pavlovsky, N., McRae, E., Bernier, P.: Opening of single-walled carbon nanotubes: evidence given by krypton and xenon adsorption. Surf. Sci. 531(1), 86–92 (2003)

    Article  CAS  Google Scholar 

  • Bienfait, M., Zeppenfield, P., Dupont-Pavlovsky, N., Palmari, J.P., Johnson, M.R., Wilson, T., et al.: Adsorption of argon on carbon nanotube bundles and its influence on the bundle lattice parameter. Phys. Rev. Lett. 91, 035503 (2003)

    Article  CAS  Google Scholar 

  • Calbi, M.M., Toigo, F., Cole, M.W.: Dilation-induced phases of gases absorbed within a bundle of carbon nanotubes. Phys. Rev. Lett. 86, 5062–5065 (2001)

    Article  CAS  Google Scholar 

  • Cimino, R., Cychosz, K.A., Thommes, M., Neimark, A.V.: Experimental and theoretical studies of scanning adsorption–desorption isotherms. Colloids Surf. A 437, 76–89 (2013)

    Article  CAS  Google Scholar 

  • Feng, X., Matranga, C., Vidic, R., Borguet, E.: A vibrational spectroscopic study of the fate of oxygen-containing functional groups and trapped CO2 in single-walled carbon nanotubes during thermal treatment. J. Phys. Chem. B 108, 19949–19954 (2004)

    Article  CAS  Google Scholar 

  • Fujiwara, A., Ishii, K., Suematsu, H., Kataura, H., Maniwa, Y., Suzuki, S., et al.: Gas adsorption in the inside and outside of single-walled carbon nanotubes. Chem. Phys. Lett. 336(3–4), 205–211 (2001)

    Article  CAS  Google Scholar 

  • Hodak, M., Girifalko, L.A.: Systems of C60 molecules inside (10,10) and (15,15) nanotube: a Monte Carlo study. Phys. Rev. B 68, 085405 (2003)

    Article  Google Scholar 

  • Horikawa, T., Do, D.D., Nicholson, D.: Capillary condensation of adsorbates in porous materials. Adv. Colloid Interface Sci. 169, 40–58 (2011)

    Article  CAS  Google Scholar 

  • Jakubek, Z.J., Simard, B.: Two confined phases of argon adsorbed inside open single walled carbon nanotubes. Langmuir 20, 5940–5945 (2004)

    Article  CAS  Google Scholar 

  • Jakubek, Z.J., Simard, B.: Endohedral condensation and higher exohedral coverage on open single-walled carbon nanotubes at 77 K. Langmuir 21, 10730–10734 (2005)

    Article  CAS  Google Scholar 

  • Jiang, Y.Y., Zhou, W., Kim, T., Huang, Y., Zuo, J.M.: Measurement of radial deformation of single-wall carbon nanotubes induced by intertube van der Waals forces. Phys. Rev. B 77, 153405 (2008)

    Article  Google Scholar 

  • Johnson, M.R., Rols, S., Wass, P., Muris, M., Bienfait, M., Zeppenfeld, P., et al.: Neutron diffraction and numerical modelling investigation of methane adsorption on bundles of carbon nanotubes. Chem. Phys. 293(2), 217–230 (2003)

    Article  CAS  Google Scholar 

  • Kim, U.J., Liu, X.M., Furtado, C.A., Chen, G., Saito, R., Jiang, J., et al.: Infrared-active vibrational modes of single-walled carbon nanotubes. Phys. Rev. Lett. 95, 157402 (2005)

    Article  CAS  Google Scholar 

  • Kuznetsova, A., Mawhinney, D.B., Naumenko, V., Yates Jr, J.T., Liu, J., Smalley, R.E.: Enhancement of adsorption inside of single-walled nanotubes: opening the entry ports. Chem. Phys. Lett. 321(3–4), 292–296 (2000)

    Article  CAS  Google Scholar 

  • López, M.J., Rubio, A., Alonso, J.A., Qin, L.C., Iijima, S.: Novel polygonized single-wall carbon nanotube bundles. Phys. Rev. Lett. 86, 3056–3059 (2001)

    Article  Google Scholar 

  • Maddox, M.W., Gubbins, K.E.: Molecular simulation of fluid adsorption in buckytubes. Langmuir 11, 3988–3996 (1995)

    Article  CAS  Google Scholar 

  • Maddox, M., Ulberg, D., Gubbins, K.E.: Molecular simulation of simple fluids and water in porous carbon. Fluid Phase Equilib. 104, 145–158 (1995)

    Article  CAS  Google Scholar 

  • Muris, M., Dufau, N., Bienfait, M., Dupont-Pavlovsky, N., Grillet, Y., Palmari, J.P.: Methane and krypton adsorption on single-walled carbon nanotubes. Langmuir 16, 7019–7022 (2000)

    Article  CAS  Google Scholar 

  • Muris, M., Dupont-Pavlovsky, N., Bienfait, M., Zeppenfeld, P.: Where are the molecules adsorbed on single-walled nanotubes? Surf. Sci. 492(1–2), 67–74 (2001)

    Article  CAS  Google Scholar 

  • Nguyen, P.T.M., Do, D.D., Nicholson, D.: Pore connectivity and hysteresis in gas adsorption: a simple three-pore model. Colloids Surf. A 437, 56–68 (2013)

    Article  CAS  Google Scholar 

  • Puibasset, J.: Fluid adsorption in linear pores: a molecular simulation study of the influence of heterogeneities on the hysteresis loop and the distribution of metastable states. Mol. Simul. 40(7–9), 690–697 (2014)

    Article  CAS  Google Scholar 

  • Sadeghi, M., Parsafar, G.A.: Toward an equation of state for water inside carbon nanotubes. J. Phys. Chem. B 116, 4943–4951 (2012)

    Article  CAS  Google Scholar 

  • Shi, W., Johnson, J.K.: Gas adsorption on heterogeneous single-walled carbon nanotube bundles. Phys. Rev. Let. 91, 015504 (2003)

    Article  Google Scholar 

  • Stan, G., Crespi, V.H., Cole, M.W., Boninsegni, M.: Interstitial He and Ne in nanotube bundles. J. Low Temp. Phys. 113(3–4), 447–452 (1998)

    Article  CAS  Google Scholar 

  • Takaishi, T., Sensui, Y.: Thermal transpiration effect of hydrogen, rare gases and methane. Trans. Farad. Soc. 59, 2503–2514 (1963)

    Article  CAS  Google Scholar 

  • Talapatra, S., Zambano, A.Z., Weber, S.E., Migone, A.D.: Gases do not adsorb on the interstitial channels of closed-ended single-walled carbon nanotube bundles. Phys. Rev. Lett. 85, 138–141 (2000)

    Article  CAS  Google Scholar 

  • Talapatra, S., Migone, A.D.: Existence of novel quasi-one-dimensional phases of atoms adsorbed on the exterior surface of close-ended single wall nanotube bundles. Phys. Rev. Lett. 87, 206106 (2001)

    Article  CAS  Google Scholar 

  • Talapatra, S., Krungleviciute, V., Migone, A.D.: Higher coverage gas adsorption on the surface of carbon nanotubes: evidence for a possible new phase in the second layer. Phys. Rev. Lett. 89, 246106 (2002)

    Article  CAS  Google Scholar 

  • Vodenitcharova, T., Mylvaganam, K., Zhang, L.C.: Mechanical interaction between single-walled carbon nanotubes during the formation of a bundle. J. Mater. Sci. 42(13), 4935–4941 (2007)

    Article  CAS  Google Scholar 

  • Williams, K.A., Eklund, P.C.: Monte Carlo simulations of H2 physisorption in finite-diameter carbon nanotube ropes. Chem. Phys. Lett. 320(3–4), 352–358 (2000)

    Article  CAS  Google Scholar 

  • Zang, L.C.: On the mechanics of single-walled carbon nanotubes. J. Mater. Process. Technol. 209(9), 4223–4228 (2009)

    Article  Google Scholar 

  • Zhang, J., Zou, H., Qing, Q., Yang, Y., Li, Q., Liu, Z., et al.: Effect of chemical oxidation on the structure of single-walled carbon nanotubes. J. Phys. Chem. B 107, 3712–3718 (2003)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Acknowledgment is made to the French Agence Nationale de la Recherche (ANR) (Grant ANR-10-BLANC-0819-01-SPRINT) and the Région Lorraine (Grant 30031172) for their support. The authors thank Prof. C. Carteret, Dr. M. Dossot and Dr. S. Fontana for fruitful discussions and Dr. J.-F. Marêché for important technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Svetlana Yu Tsareva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsareva, S.Y., McRae, E., Valsaque, F. et al. Dose-dependent isotherm of Kr adsorption on heterogeneous bundles of closed single-walled carbon nanotubes. Adsorption 21, 217–227 (2015). https://doi.org/10.1007/s10450-015-9664-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-015-9664-x

Keywords

Navigation