, Volume 21, Issue 3, pp 217–227 | Cite as

Dose-dependent isotherm of Kr adsorption on heterogeneous bundles of closed single-walled carbon nanotubes

  • Svetlana Yu Tsareva
  • Edward McRae
  • Fabrice Valsaque
  • Xavier Devaux


We present 77 K isotherms of krypton adsorption on bundles of closed highly-pure HiPco single-walled carbon nanotubes (SWCNTs). Two volumetric adsorption protocols were used, one with an increasing Kr dose per injection (IAD), one with a constant dose (CAD). Detailed microstructural examination showed that the SWCNTs combine into small bundles (of 25–30 SWCNTs) which are heterogeneous in diameter with a consequential range of interstitial channel (IC) shapes and sizes. The IC-sites are the subnanoscaled pores with alternating enlargements and constrictions along the tube axes. This results in adsorption dosing (AD) dependent characteristics of the low-pressure region of the isotherm. In the IAD protocol the switch-back behavior of the isotherm stemmed from metastable adsorption. Using the CAD protocol, different branches are observed. Well-pronounced substeps were established which we interpret as corresponding to the formation of various phases of confined Kr with different atoms arrangement. The height of a given substep obtained in different measurements depends on the AD value which can strongly influence the population of the site. Some substeps existing only for certain values of AD suggests the existence of a certain selectivity or of a preferential phase formation according to this value.


Single-walled carbon nanotubes bundles Kr adsorption isotherms High-resolution transmission electron microscopy DRIFT spectroscopy 



Acknowledgment is made to the French Agence Nationale de la Recherche (ANR) (Grant ANR-10-BLANC-0819-01-SPRINT) and the Région Lorraine (Grant 30031172) for their support. The authors thank Prof. C. Carteret, Dr. M. Dossot and Dr. S. Fontana for fruitful discussions and Dr. J.-F. Marêché for important technical assistance.


  1. Abrams, Z.R., Hanein, Y.: Radial deformation measurements of isolated pairs of single-walled carbon nanotubes. Carbon 45(4), 738–743 (2007)CrossRefGoogle Scholar
  2. Arab, M., Picaud, F., Ramseyer, C., Babaa, M.R., Valsaque, F., McRae, E.: Determination of the single wall carbon nanotube opening ratio by means of rare gas adsorption. Chem. Phys. Lett. 423(1–3), 183–186 (2006)CrossRefGoogle Scholar
  3. Arab, M., Picaud, F., Ramseyer, C., Baaba, M.R., Valsaque, F., McRae, E.: Characterization of single wall carbon nanotubes by means of rare gas adsorption. J. Chem. Phys. 126(5), 054709 (2007)CrossRefGoogle Scholar
  4. Babaa, M.R., Stepanek, I., Masenelli-Varlot, K., Dupont-Pavlovsky, N., McRae, E., Bernier, P.: Opening of single-walled carbon nanotubes: evidence given by krypton and xenon adsorption. Surf. Sci. 531(1), 86–92 (2003)CrossRefGoogle Scholar
  5. Bienfait, M., Zeppenfield, P., Dupont-Pavlovsky, N., Palmari, J.P., Johnson, M.R., Wilson, T., et al.: Adsorption of argon on carbon nanotube bundles and its influence on the bundle lattice parameter. Phys. Rev. Lett. 91, 035503 (2003)CrossRefGoogle Scholar
  6. Calbi, M.M., Toigo, F., Cole, M.W.: Dilation-induced phases of gases absorbed within a bundle of carbon nanotubes. Phys. Rev. Lett. 86, 5062–5065 (2001)CrossRefGoogle Scholar
  7. Cimino, R., Cychosz, K.A., Thommes, M., Neimark, A.V.: Experimental and theoretical studies of scanning adsorption–desorption isotherms. Colloids Surf. A 437, 76–89 (2013)CrossRefGoogle Scholar
  8. Feng, X., Matranga, C., Vidic, R., Borguet, E.: A vibrational spectroscopic study of the fate of oxygen-containing functional groups and trapped CO2 in single-walled carbon nanotubes during thermal treatment. J. Phys. Chem. B 108, 19949–19954 (2004)CrossRefGoogle Scholar
  9. Fujiwara, A., Ishii, K., Suematsu, H., Kataura, H., Maniwa, Y., Suzuki, S., et al.: Gas adsorption in the inside and outside of single-walled carbon nanotubes. Chem. Phys. Lett. 336(3–4), 205–211 (2001)CrossRefGoogle Scholar
  10. Hodak, M., Girifalko, L.A.: Systems of C60 molecules inside (10,10) and (15,15) nanotube: a Monte Carlo study. Phys. Rev. B 68, 085405 (2003)CrossRefGoogle Scholar
  11. Horikawa, T., Do, D.D., Nicholson, D.: Capillary condensation of adsorbates in porous materials. Adv. Colloid Interface Sci. 169, 40–58 (2011)CrossRefGoogle Scholar
  12. Jakubek, Z.J., Simard, B.: Two confined phases of argon adsorbed inside open single walled carbon nanotubes. Langmuir 20, 5940–5945 (2004)CrossRefGoogle Scholar
  13. Jakubek, Z.J., Simard, B.: Endohedral condensation and higher exohedral coverage on open single-walled carbon nanotubes at 77 K. Langmuir 21, 10730–10734 (2005)CrossRefGoogle Scholar
  14. Jiang, Y.Y., Zhou, W., Kim, T., Huang, Y., Zuo, J.M.: Measurement of radial deformation of single-wall carbon nanotubes induced by intertube van der Waals forces. Phys. Rev. B 77, 153405 (2008)CrossRefGoogle Scholar
  15. Johnson, M.R., Rols, S., Wass, P., Muris, M., Bienfait, M., Zeppenfeld, P., et al.: Neutron diffraction and numerical modelling investigation of methane adsorption on bundles of carbon nanotubes. Chem. Phys. 293(2), 217–230 (2003)CrossRefGoogle Scholar
  16. Kim, U.J., Liu, X.M., Furtado, C.A., Chen, G., Saito, R., Jiang, J., et al.: Infrared-active vibrational modes of single-walled carbon nanotubes. Phys. Rev. Lett. 95, 157402 (2005)CrossRefGoogle Scholar
  17. Kuznetsova, A., Mawhinney, D.B., Naumenko, V., Yates Jr, J.T., Liu, J., Smalley, R.E.: Enhancement of adsorption inside of single-walled nanotubes: opening the entry ports. Chem. Phys. Lett. 321(3–4), 292–296 (2000)CrossRefGoogle Scholar
  18. López, M.J., Rubio, A., Alonso, J.A., Qin, L.C., Iijima, S.: Novel polygonized single-wall carbon nanotube bundles. Phys. Rev. Lett. 86, 3056–3059 (2001)CrossRefGoogle Scholar
  19. Maddox, M.W., Gubbins, K.E.: Molecular simulation of fluid adsorption in buckytubes. Langmuir 11, 3988–3996 (1995)CrossRefGoogle Scholar
  20. Maddox, M., Ulberg, D., Gubbins, K.E.: Molecular simulation of simple fluids and water in porous carbon. Fluid Phase Equilib. 104, 145–158 (1995)CrossRefGoogle Scholar
  21. Muris, M., Dufau, N., Bienfait, M., Dupont-Pavlovsky, N., Grillet, Y., Palmari, J.P.: Methane and krypton adsorption on single-walled carbon nanotubes. Langmuir 16, 7019–7022 (2000)CrossRefGoogle Scholar
  22. Muris, M., Dupont-Pavlovsky, N., Bienfait, M., Zeppenfeld, P.: Where are the molecules adsorbed on single-walled nanotubes? Surf. Sci. 492(1–2), 67–74 (2001)CrossRefGoogle Scholar
  23. Nguyen, P.T.M., Do, D.D., Nicholson, D.: Pore connectivity and hysteresis in gas adsorption: a simple three-pore model. Colloids Surf. A 437, 56–68 (2013)CrossRefGoogle Scholar
  24. Puibasset, J.: Fluid adsorption in linear pores: a molecular simulation study of the influence of heterogeneities on the hysteresis loop and the distribution of metastable states. Mol. Simul. 40(7–9), 690–697 (2014)CrossRefGoogle Scholar
  25. Sadeghi, M., Parsafar, G.A.: Toward an equation of state for water inside carbon nanotubes. J. Phys. Chem. B 116, 4943–4951 (2012)CrossRefGoogle Scholar
  26. Shi, W., Johnson, J.K.: Gas adsorption on heterogeneous single-walled carbon nanotube bundles. Phys. Rev. Let. 91, 015504 (2003)CrossRefGoogle Scholar
  27. Stan, G., Crespi, V.H., Cole, M.W., Boninsegni, M.: Interstitial He and Ne in nanotube bundles. J. Low Temp. Phys. 113(3–4), 447–452 (1998)CrossRefGoogle Scholar
  28. Takaishi, T., Sensui, Y.: Thermal transpiration effect of hydrogen, rare gases and methane. Trans. Farad. Soc. 59, 2503–2514 (1963)CrossRefGoogle Scholar
  29. Talapatra, S., Zambano, A.Z., Weber, S.E., Migone, A.D.: Gases do not adsorb on the interstitial channels of closed-ended single-walled carbon nanotube bundles. Phys. Rev. Lett. 85, 138–141 (2000)CrossRefGoogle Scholar
  30. Talapatra, S., Migone, A.D.: Existence of novel quasi-one-dimensional phases of atoms adsorbed on the exterior surface of close-ended single wall nanotube bundles. Phys. Rev. Lett. 87, 206106 (2001)CrossRefGoogle Scholar
  31. Talapatra, S., Krungleviciute, V., Migone, A.D.: Higher coverage gas adsorption on the surface of carbon nanotubes: evidence for a possible new phase in the second layer. Phys. Rev. Lett. 89, 246106 (2002)CrossRefGoogle Scholar
  32. Vodenitcharova, T., Mylvaganam, K., Zhang, L.C.: Mechanical interaction between single-walled carbon nanotubes during the formation of a bundle. J. Mater. Sci. 42(13), 4935–4941 (2007)CrossRefGoogle Scholar
  33. Williams, K.A., Eklund, P.C.: Monte Carlo simulations of H2 physisorption in finite-diameter carbon nanotube ropes. Chem. Phys. Lett. 320(3–4), 352–358 (2000)CrossRefGoogle Scholar
  34. Zang, L.C.: On the mechanics of single-walled carbon nanotubes. J. Mater. Process. Technol. 209(9), 4223–4228 (2009)CrossRefGoogle Scholar
  35. Zhang, J., Zou, H., Qing, Q., Yang, Y., Li, Q., Liu, Z., et al.: Effect of chemical oxidation on the structure of single-walled carbon nanotubes. J. Phys. Chem. B 107, 3712–3718 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Svetlana Yu Tsareva
    • 1
  • Edward McRae
    • 1
  • Fabrice Valsaque
    • 1
  • Xavier Devaux
    • 1
  1. 1.Institut Jean Lamour, UMR 7198 CNRS - Faculté des Sciences et TechnologiesUniversité de LorraineVandœuvre-lès-NancyFrance

Personalised recommendations