Advertisement

Adsorption

, Volume 21, Issue 3, pp 185–194 | Cite as

Adsorptive separation and recovery of biobutanol from ABE model solutions

  • Niloofar Abdehagh
  • Priya Gurnani
  • F. Handan Tezel
  • Jules ThibaultEmail author
Article

Abstract

Adsorption is one of the most energy efficient techniques for butanol separation from dilute fermentation broths. To develop an efficient butanol adsorption process, adsorption and desorption are equally important since it is paramount to be able to desorb the adsorbed butanol to produce a high concentration butanol product. Although there are a good number of investigations done to find suitable adsorbents for this process, only few studies considered the desorption process. In this study, activated carbon F-400 was used as the butanol adsorbent since it has a high adsorption rate and capacity and is selective to butanol in the presence of other fermentation broth components. The thermal desorption process was performed in adsorption–desorption cycles both for butanol–water and acetone–butanol–ethanol (ABE) model solutions. The results for 1.5 wt% feed butanol–water binary solutions showed that the butanol adsorption capacity and the recovery of butanol were fairly constant (around 302 mg/g and 84 %, respectively) in subsequent adsorption–desorption cycles confirming that all the amount of adsorbed butanol is desorbed and the adsorption column could preserve its initial adsorption capacity in different cycles. Similar performance was obtained for butanol separation from the ABE model solution containing 1.2, 0.5, 0.2, 0.5, 0.5, 0.4 and 0.4 wt% butanol, acetone, ethanol, butyric acid, acetic acid, glucose and xylose, respectively. The adsorption capacity and recovery for butanol were 170 mg/g and 80 %, respectively.

Keywords

Bio-butanol ABE model solution ABE fermentation Adsorption Desorption Activated carbon Biofuels 

Notes

Acknowledgments

The authors would like to thank the University of Ottawa and Natural Sciences and Engineering Research Council (NSERC) of Canada for their financial contributions for this study.

References

  1. Abdehagh, N., Tezel, F.H., Thibault, J.: Adsorbent screening for biobutanol separation by adsorption: kinetics, isotherms and competitive effect of other compounds. Adsorption 19, 1263–1272 (2013)CrossRefGoogle Scholar
  2. Abdehagh, N., Tezel, F.H., Thibault, J.: Separation techniques in butanol production: challenges and developments (Review). Biomass Bioenergy 60, 222–246 (2014)CrossRefGoogle Scholar
  3. Águeda, V.I., Delgado, J.A., Uguina, M.A., Sotelo, J.L., García, A.: Column dynamics of an adsorption–drying–desorption process for butanol recovery from aqueous solutions with silicalite pellets. Sep. Pur. Technol. 104, 307–321 (2013)CrossRefGoogle Scholar
  4. Antoni, D., Zverlov, V.V., Schwarz, W.H.: Biofuels from microbes (mini review). Appl. Microbiol. Biotechnol. 77, 23–35 (2007)CrossRefGoogle Scholar
  5. Dellomonaco, C., Fava, F., Gonzalez, R.: The path to next generation biofuels: successes and challenges in the era of synthetic biology. Microb. Cell Fact. 9, 3–17 (2010)CrossRefGoogle Scholar
  6. Dhamole, P.B., Wang, Z., Liu, Y., Wang, B., Feng, H.: Extractive fermentation with non-ionic surfactants to enhance butanolproduction. Biomass Bioenergy 40, 112–119 (2012)CrossRefGoogle Scholar
  7. Dürre, P.: Biobutanol: an attractive biofuel. Biotechnol. J. 2, 1525–1534 (2007)CrossRefGoogle Scholar
  8. Ezeji, T.C., Qureshi, N., Blaschek, H.P.: Production of acetone, butanol and ethanol by Clostridium beijerinckii BA101 and in situ recovery by gas stripping. World J. Microbiol. Biotechnol. 19, 595–603 (2003)CrossRefGoogle Scholar
  9. Ezeji, T.C., Qureshi, N., Blaschek, H.P.: Butanol fermentation research: upstream and downstream manipulations. Chem. Rec. 4, 305–314 (2004)CrossRefGoogle Scholar
  10. Ezeji, T.C., Qureshi, N., Blaschek, H.P.: Bioproduction of butanol from biomass: from genes to Bioreactors. Curr. Opin. Biotechnol. 18, 220–227 (2007)CrossRefGoogle Scholar
  11. Faisal, A., Zarebska, A., Saremi, P., Korelskiy, D., Ohlin, L., Rova, U.: MFI zeolite as adsorbent for selective recovery of hydrocarbons from ABE fermentation broths. Adsorption 20, 465–470 (2014)CrossRefGoogle Scholar
  12. Fouad, E.A., Feng, X.: Use of pervaporation to separate butanol from dilutes aqueous solutions: effects of operating conditions and concentration polarization. J. Membr. Sci. 323, 428–435 (2008)CrossRefGoogle Scholar
  13. García, V., Pongracz, E., Muurinen, E., Keiski, R.L.: Recovery of n-butanol from salt containing solutions by pervaporation. Desalination 241, 201–211 (2009)CrossRefGoogle Scholar
  14. Garcia-Chavez, L.Y., Garsia, C.M., Schuur, B., de Haan, A.B.: Biobutanol recovery using non-fluorinated task-specific ionic liquids. Ind. Eng. Chem. Res. 51, 8293–8301 (2012)CrossRefGoogle Scholar
  15. Groot, W.J., Luyben, KChAM: In situ product recovery by adsorption in the butanol/isopropanol batch fermentation. Appl. Microbiol. Biotechnol. 25, 29–31 (1986)CrossRefGoogle Scholar
  16. Ha, S.H., Maib, N.L., Koo, Y.M.: Butanol recovery from aqueous solution into ionic liquids by liquid–liquid extraction. Process Biochem. 45, 1899–1903 (2010)CrossRefGoogle Scholar
  17. Harvey, B.G., Meylemans, H.A.: The role of butanol in the development of sustainable fuel technologies. J. Chem. Technol. Biotechnol. 86, 2–9 (2011)CrossRefGoogle Scholar
  18. Hecke, W.V., Vandezande, P., Claes, S., Vangeel, S., Beckers, H., Diels, L.: Integrated bioprocess for long-term continuous cultivation of clostridium acetobutylicum coupled to pervaporation with PDMS composite membranes. Bioresour. Technol. 111, 368–377 (2012)CrossRefGoogle Scholar
  19. Hecke, W.V., Hofmann, T., De Wever, H.: Pervaporative recovery of ABE during continuous cultivation: enhancement of performance. Bioresour. Technol. 129, 421–429 (2013)CrossRefGoogle Scholar
  20. Holtzapple, M.T., Brown, R.F.: Conceptual design for a process to recover volatile solutes from aqueous solutions using silicalite. Sep. Technol. 4, 213–229 (1995)CrossRefGoogle Scholar
  21. Khoury, F.M.: Multistage Separation Processes, 3rd edn. CRC Press, Boca Raton (2005)Google Scholar
  22. Li, G., Wei, W., Wu, H., Dong, X., Jiang, M., Jin, W.: Pervaporation performance of PDMS/ceramic composite membrane in acetone butanol ethanol (ABE) fermentation-PV coupled process. J. Membr. Sci. 373, 121–129 (2011)CrossRefGoogle Scholar
  23. Li, S., Srivastava, R., Parnas, R.S.: Separation of 1-butanol by pervaporation using a novel tri-layer PDMS composite membrane. J. Membr. Sci. 363, 287–294 (2010)CrossRefGoogle Scholar
  24. Lin, X., Li, R., Wen, Q., Wu, J., Fan, J., Jin, X.: Experimental and modeling studies on the sorption breakthrough behaviors of butanol from aqueous solution in a fixed-bed of KA-I resin. Biotechnol. Bioprocess Eng. 18, 223–233 (2013)CrossRefGoogle Scholar
  25. Lin, X., Wu, J., Fan, J., Qian, W., Zhou, X., Qian, C.: Adsorption of butanol from aqueous solution onto a new type of macroporous adsorption resin: studies of adsorption isotherms and kinetics simulation. J. Chem. Technol. Biotechnol. 87, 924–931 (2012)CrossRefGoogle Scholar
  26. Lu, C., Zhao, J., Yang, S.T., Wei, D.: Fed-batch fermentation for n-butanol production from cassava bagasse hydrolysate in a fibrous bed bioreactor with continuous gas stripping. Bioresour. Technol. 104, 380–387 (2012)CrossRefGoogle Scholar
  27. Liu, D., Chen, Y., Ding, F.Y., Zhao, T., Wu, J.L., Guo, T., Ren, H.F., Li, B.B., Niu, H.Q., Cao, Z., Lin, X.Q., Xie, J.J., He, X.J., Han-Jie Ying, H.J.: Biobutanol production in a Clostridium acetobutylicum biofilm reactor integrated with simultaneous product recovery by adsorption. Biotechnol. Biofuels 7, 5–17 (2014)CrossRefGoogle Scholar
  28. Maddox, I.S.: Use of silicalite for the adsorption of n-butanol from fermentation liquids. Biotechnol. Lett. 4, 759–760 (1982)CrossRefGoogle Scholar
  29. Meagher, M.M., Qureshi, N., Hutkins, R.: Silicalite membrane and method for the selective recovery and concentration of acetone and butanol from model ABE solutions and fermentation broth. US patent 5,755,967 (1998)Google Scholar
  30. Nielsen, D.R., Prather, K.J.: In situ product recovery of n-butanol using polymeric resins. Biotechnol. Bioeng. 102, 811–821 (2009)CrossRefGoogle Scholar
  31. Nielsen, L., Larsson, M., Hoist, O., Mattiasson, B.: Adsorbents for extractive bioconversion applied to the acetone-butanol fermentation. Appl. Microbiol. Biotechnol. 28, 335–339 (1988)CrossRefGoogle Scholar
  32. Oudshoorn, A., Van der Wielen, L.A.M., Straathof, A.J.J.: Assessment of options for selective 1-butanol recovery from aqueous solution. Ind. Eng. Chem. Res. 48, 7325–7336 (2009)CrossRefGoogle Scholar
  33. Oudshoorn, A., Van der Wielen, L.A.M., Straathof, A.J.J.: Adsorption equilibria of bio-based21 Recovery of 1-butanol from aqueous solutions using zeolite ZSM-5 with a high Si/Al ratio; suitability of a column process for industrial applications. Biochem. Eng. J. 49, 33–39 (2012)Google Scholar
  34. Qureshi, N., Hughes, S., Maddox, I.S., Cotta, M.A.: Energy-efficient recovery of butanol from model solutions and fermentation broth by adsorption. Bioprocess Biosyst. Eng. 27, 215–222 (2005)CrossRefGoogle Scholar
  35. Qureshi, N., Blaschek, H.P.: Production of acetone butanol ethanol (ABE) by a hyper-producing mutant strain of Clostridium beijerinckii BA101 and recovery by pervaporation. Biotechnol. Prog. 15, 594–602 (1999)CrossRefGoogle Scholar
  36. Rabari, D., Banerjee, T.: Experimental and Theoretical Studies on the Effectiveness of Phosphonium-Based Ionic Liquids for Butanol Removal at T = 298.15 K and p = 1 atm. Ind. Eng. Chem. Res. (2014). doi: 10.1021/ie500833h Google Scholar
  37. Regdon, I., Kiraly, Z., Dekany, I., Lagaly, G.: Adsorption of 1-butanol from water on modified silicate surfaces. Colloid Polym. Sci. 272, 1129–1135 (1994a)CrossRefGoogle Scholar
  38. Regdon, I., Dekany, I., Lagaly, G.: A new way for calculating the adsorption capacity from surface excess isotherms. Colloid Polym. Sci. 276, 511–517 (1994b)CrossRefGoogle Scholar
  39. Remi, J.C.S., Baron, G.V., Denayer, J.F.M.: Adsorptive separation for the recovery and purification of biobutanol. Adsorption 18, 367–373 (2012)CrossRefGoogle Scholar
  40. Remi, J.C.S., Remy, T., Van Hunskerken, V., Van de Perre, S., Duerinck, T., Maes, M., De Vos, D., Gobechiya, E., Kirschock, C.E.A., Baron, G.V., Denayer, J.F.M.: Biobutanol separation with the metal-organic framework ZIF-8. ChemSusChem 4, 1074–1077 (2011)CrossRefGoogle Scholar
  41. Rohani, A.S., Mehrani, P., Thibault, J.: Comparison of in situ recovery methods of gas stripping, pervaporation, and vacuum separation by multi-objective optimization for producing biobutanol via fermentation process. Can. J. Chem. Eng. In print (2014)Google Scholar
  42. Saravanan, V., Waijers, D.A., Ziari, M., Noordermeer, M.A.: Recovery of 1-butanol from aqueous solutions using zeolite ZSM-5 with a high Si/Al ratio; suitability of a column process for industrial applications. Biochem. Eng. J. 49, 33–39 (2010)CrossRefGoogle Scholar
  43. Shapovalov, O.I., Ashkinazi, L.A.: Biobutanol: biofuel of second generation. Russ. J. Appl. Chem. 81(12), 2232–2236 (2008)CrossRefGoogle Scholar
  44. Sharma, P., Chung, W.J.: Synthesis of MEL type zeolite with different kinds of morphology for the recovery of 1-butanol from aqueous solution. Desalination 275, 172–180 (2011)CrossRefGoogle Scholar
  45. Sowerby, B., Crittenden, B.D.: Vapour phase separation of alcohol water mixtures by adsorption onto silicalite. Gas Sep. Purif. 2, 177–183 (1988)CrossRefGoogle Scholar
  46. Takeuchi, Y., Iwamotob, H., Miyata, M., Seiichi Asano, S., Haradac, M.: Adsorption of l-butanol and p-xylene vapour with high silica zeolites and their mixtures. Sep. Technol. 5, 23–34 (1995)CrossRefGoogle Scholar
  47. Thirmal, C., Dahman, Y.: Comparison of existing pretreatment, saccharification, and fermentation processes for butanol production from agricultural residues. Can. J. Chem. Eng. 90, 745–761 (2012)CrossRefGoogle Scholar
  48. Thompson, A.B., Scholes, B.C., Notestein, J.M.: Recovery of dilute aqueous acetone, butanol, and ethanol with immobilized calixarenecavities. Appl. Mater. Interfaces 6, 289–297 (2014)CrossRefGoogle Scholar
  49. Thompson, A.B., Cope, S.J., Swift, T.D., Notestein, J.M.: Adsorption of n-butanol from dilute aqueous solution with grafted calixarenes. Langmuir 27, 11990–11998 (2011)CrossRefGoogle Scholar
  50. Wei, P., Zhu, D.W.: Acetone-butanol-ethanol (ABE) fermentation using Clostridium acetobutylicum XY16 and in situ recovery by PDMS/ceramic composite membrane. Bioprocess Biosyst. Eng. 35, 1057–1065 (2012)CrossRefGoogle Scholar
  51. Xue, C., Zhao, J., Liu, F., Lu, C., Yang, S.T., Bai, F.W.: Two-stage in situ stripping for enhanced butanol fermentation and energy-saving product recovery. Bioresour. Technol. 135, 396–402 (2013)CrossRefGoogle Scholar
  52. Xue, C., Zhao, J., Lu, C., Yang, S.T., Bai, F.W., Tang, I.C.: High-titer n-butanol production by Clostridium acetobutylicum JB200 in fed-batch fermentation with intermittent gas stripping. Biotechnol. Bioeng. 109, 2746–2756 (2012)CrossRefGoogle Scholar
  53. Yang, X., Tsai, G.J., Tsao, G.T.: Enhancement of in situ adsorption on the acetone-butanol fermentation by Clostridium acetobutylicum. Sep. Technol. 4, 81–92 (1994)CrossRefGoogle Scholar
  54. Yen, H.W., Lin, S.F., Yang, I.K.: Use of poly(ether-block-amide) in pervaporation coupling with a fermenter to enhance butanol production in the cultivation of Clostridium acetobutylicum. J. Biosci. Bioeng. 113(3), 372–377 (2012)CrossRefGoogle Scholar
  55. Ying, H., Lin, X., Chen, Y., Chen, X., Bai, J., Xiaong, J.: Method for separating butanol. Pub. No.: US 2013/0158303 (2013)Google Scholar
  56. Zheng, Y.N., Li, L.Z., Xian, M., Ma, Y.J., Yang, J.M., Xu, X., He, D.Z.: Problems with the microbial production of butanol. J. Ind. Microbiol. Biotechnol. 36, 1127–1138 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Niloofar Abdehagh
    • 1
  • Priya Gurnani
    • 1
  • F. Handan Tezel
    • 1
  • Jules Thibault
    • 1
    Email author
  1. 1.Department of Chemical EngineeringUniversity of OttawaOttawaCanada

Personalised recommendations