Skip to main content
Log in

Optimizing packing heterogeneity for sorption enhanced metathesis reaction

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

An equilibrium-limited heterogeneous catalytic reaction, propene metathesis is suitable for process intensification via sorption enhanced reaction. In this work, we investigate the effect of catalyst/adsorbent configuration for propene metathesis in conjunction with pressure swing reaction. The catalyst and adsorbent configuration variations were defined in terms of packing heterogeneity index (PHI) and their effects were investigated experimentally and theoretically. Model predictions were tested against experimental data with variable PHI and adsorption/reaction conditions, including the absence of heterogeneity and of separation process. The product 2-butene was strongly adsorbed and retained by the intermediate adsorbent layers, thereby increasing reactant concentration in the reaction zone and enhancing conversion and rate of reaction in the subsequent layer. Model predictions were found to agree reasonably with experimental data and were used to elucidate the mechanism and optimizing principle for such reactors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

B:

Langmuir adsorption coefficient (kg/mol)

C:

Gas phase species concentration (mol/cm3)

Dz :

Axial dispersion coefficient (m2/s)

K:

Mass transfer coefficient (s−1)

L:

Bed length (m)

LC,k :

Length of kth catalyst layer

LA,k :

Length of kth adsorbent layer

Nc:

Number of components

P:

Pressure (atm)

Pe:

Peclet number

Q:

Species concentration in adsorbed phase (mol/kg)

\( r_{rxn} \) :

Rate of reaction (mol/s kg)

T:

Temperature

t:

Time (s)

u:

Gas velocity (m/s)

\( \overline{v} \) :

Dimensionless interstitial fluid velocity

\( x_{CA} \) :

Catalyst/adsorbent volume ratio

xi :

Dimensionless solid-phase mole fraction

y:

Gas phase mole fraction

z:

Axial distance

\( \alpha_{i} \) :

Dimensionless mass transfer coefficient = kiL/u

ε:

Bed voidage

ϕ:

Packing heterogeneity index

\( \lambda \) :

Ethene production (mole/kgcat/ads/s)

ρ:

Density (kg/m3)

\( \upsilon_{\text{i}} \) :

Stoichiometric coefficient of component i

τ:

Dimensionless time

\( \xi \) :

Mass capacity factor

Ads:

Adsorbent

Cat:

Catalyst

Feed:

Feed stream

i:

Gas species

P:

Propene

B:

Butene

E:

Ethene

H:

High pressure

L:

Low pressure

S:

Saturation

*:

Equilibrium condition

References

  • Beaver, M.G., Caram, H.S., Sircar, S.: Sorption enhanced reaction process for direct production of fuel-cell grade hydrogen by low temperature catalytic steam–methane reforming. J. Power Sources 195, 1998–2002 (2010)

    Article  CAS  Google Scholar 

  • Chauvin, Y.: Olefin metathesis. Angew. Chem. Int. Ed. 45, 3740–3747 (2006)

    Article  Google Scholar 

  • Chen, S., Xiang, W., Wang, D., Xue, Z.: Incorporating IGCC and CaO sorption-enhanced process for power generation with CO2 capture. Appl. Energy 95, 285–294 (2012)

    Article  CAS  Google Scholar 

  • Dragutan, V., Balaban, A.T., Dimonie, M.: Olefin Metathesis and Ring-Opening Polymerization of Cycloolefins. Wiley, New York (1985)

    Google Scholar 

  • García, S., Gil, M.V., Pis, J.J., Rubiera, F., Pevida, C.: Cyclic operation of a fixed-bed pressure and temperature swing process for CO2 capture: experimental and statistical analysis. Int. J. Greenh. Gas Control 12, 35–43 (2013)

    Article  Google Scholar 

  • Gomes, V.G., Fuller, O.M.: Fixed-bed adsorber dynamics in binary physisorption-diffusion. Can. J. Chem. Eng. 72, 622–630 (1994)

  • Gomes, V.G., Fuller, O.M.: Dynamics of propene metathesis: physisorption and diffusion in heterogeneous catalysis. AIChE J. 72, 622–630 (1996)

    Google Scholar 

  • Gomes, V.G., Yee, K.W.K.: A periodic separating reactor for propene metathesis. Chem. Eng. Sci. 57, 3839–3850 (2002)

    Article  CAS  Google Scholar 

  • Grela, K.: Progress in metathesis chemistry. Beilstein J. Org. Chem. 6, 1089–1090 (2010)

    Article  CAS  Google Scholar 

  • Grubbs, R.H.: Olefin-metathesis catalysts for the preparation of molecules and materials. Angew. Chem. Int. Ed. 45, 3760–3765 (2006)

    Article  CAS  Google Scholar 

  • Herndon, J.W., Robert, H.C., Mingos, D.M.P.: Metathesis Reactions. Comprehensive Organometallic Chemistry III. Elsevier, Oxford (2007)

    Google Scholar 

  • Jang, H.M., Lee, K.B., Caram, H.S., Sircar, S.: High-purity hydrogen production through sorption enhanced water gas shift reaction using K2CO3-promoted hydrotalcite. Chem. Eng. Sci. 73, 431–438 (2012)

    Article  CAS  Google Scholar 

  • Maring, B.J., Webley, P.A.: A new simplified pressure/vacuum swing adsorption model for rapid adsorbent screening for CO2 capture applications. Int. J. Greenh. Gas Control 15, 16–31 (2013)

    Article  CAS  Google Scholar 

  • Nobel Prize in chemistry: development of the metathesis method in organic synthesis. http://www.nobelprize.org/nobel_prizes/chemistry/laureates/2005/ (2005). Accessed 10 Mar 2013

  • Rawadieh, S., Gomes, V.G.: Steam reforming for hydrogen generation with in situ adsorptive separation. Int. J. Hydrogen Energy 34, 343–355 (2009)

    Article  CAS  Google Scholar 

  • Schrock, R.R.: Multiple metal–carbon bonds for catalytic metathesis reactions. Angew. Chem. Int. Ed. 45, 3748–3759 (2006)

    Article  CAS  Google Scholar 

  • Sheikh, J., Kershenbaum, L.S., Alpay, E.: 1-butene dehydrogenation in rapid pressure swing reaction processes. Chem. Eng. Sci. 56, 1511–1516 (2001)

    Article  CAS  Google Scholar 

  • van De Graaf, J.M., Zwiep, M., Kapteijn, F., Moulijn, J.A.: Application of a silicalite-1 membrane reactor in metathesis reactions. Appl. Catal. A 178(2), 225–241 (1999a)

    Article  Google Scholar 

  • van De Graaf, J.M., Zwiep, M., Kapteijn, F., Moulijn, J.A.: Application of a zeolite membrane reactor in the metathesis of propene. Chem. Eng. Sci. 54, 1441–1445 (1999b)

    Article  Google Scholar 

  • van Selow, E.R., Cobden, P.D., Wright, A.D., van den Brink, R.W., Jansen, D.: Improved sorbent for the sorption-enhanced water-gas shift process. Energy Procedia 4, 1090–1095 (2011)

    Article  Google Scholar 

  • Xiu, G., Li, P., E. Rodrigues, A.: Sorption-enhanced reaction process with reactive regeneration. Chem. Eng. Sci. 57, 3893–3908 (2002)

    Article  CAS  Google Scholar 

  • Zhang, H., Li, Y., Shao, S., Wu, H., Wu, P.: Grubbs-type catalysts immobilized on SBA-15: a novel heterogeneous catalyst for olefin metathesis. J. Mol. Catal. A 372, 35–43 (2013)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the award of a postgraduate studentship by Al-Hussein Bin Talal University (Jordan) and support from the Australian Research Council (ARC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent G. Gomes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rawadieh, S., Gomes, V.G. & Altarawneh, I. Optimizing packing heterogeneity for sorption enhanced metathesis reaction. Adsorption 20, 701–711 (2014). https://doi.org/10.1007/s10450-014-9614-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-014-9614-z

Keywords

Navigation