Skip to main content
Log in

Physical adsorption characterization of nanoporous materials: progress and challenges

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

Within the last two decades major progress has been achieved in understanding the adsorption and phase behavior of fluids in ordered nanoporous materials and in the development of advanced approaches based on statistical mechanics such as molecular simulation and density functional theory (DFT) of inhomogeneous fluids. This progress, coupled with the availability of high resolution experimental procedures for the adsorption of various subcritical fluids, has led to advances in the structural characterization by physical adsorption. It was demonstrated that the application of DFT based methods on high resolution experimental adsorption isotherms provides a much more accurate and comprehensive pore size analysis compared to classical, macroscopic methods. This article discusses important aspects of major underlying mechanisms associated with adsorption, pore condensation and hysteresis behavior in nanoporous solids. We discuss selected examples of state-of-the-art pore size characterization and also reflect briefly on the existing challenges in physical adsorption characterization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Aranovich, G., Donohue, M.: Determining surface areas from linear adsorption isotherms at supercritical conditions. J. Colloid Interface Sci. 194, 392–397 (1997)

    CAS  Google Scholar 

  • Bakaev, V.A.: Rumpled graphite basal plane as a model heterogeneous carbon surface. J. Chem. Phys. 102, 1398–1404 (1995)

    CAS  Google Scholar 

  • Bandosz, T.J., Biggs, M.J., Gubbins, K.E., Hattori, Y., Iiyama, T., Kaneko, K., Pikunic, J., Thomson, K.: Molecular models of porous carbons. Chem. Phys. Carbon 28, 41–228 (2003)

    CAS  Google Scholar 

  • Barton, T.J., Bull, L.M., Klemperer, W.G., Loy, D.A., McEnaney, B., Misono, M., Monson, P.A., Pez, G., Scherer, G.W., Vartuli, J.C., Yaghi, O.M.: Tailored porous materials. Chem. Mater. 11, 2633–2656 (1999)

    CAS  Google Scholar 

  • Bhatia, S.K.: Density functional theory analysis of the influence of pore wall heterogeneity on adsorption in carbons. Langmuir 18, 6845–6856 (2002)

    CAS  Google Scholar 

  • Broekhoff, J.C.P., de Boer, J.H.: Studies on pore systems in catalysts: IX. Calculation of pore distributions from the adsorption branch of nitrogen sorption isotherms in the case of open cylindrical pores A. Fundamental equations. J. Catal. 9, 8–14 (1967a)

    CAS  Google Scholar 

  • Broekhoff, J.C.P., de Boer, J.H.: Studies on pore systems in catalysts: X. Calculations of pore distributions from the adsorption branch of nitrogen sorption isotherms in the case of open cylindrical pores B. Applications. J. Catal. 9, 15–27 (1967b)

    CAS  Google Scholar 

  • Broekhoff, J.C.P., de Boer, J.H.: Studies on pore systems in catalysts: XIII. Pore distributions from the desorption branch of a nitrogen sorption isotherm in the case of cylindrical pores B. Applications. J. Catal. 10, 377–390 (1968a)

    CAS  Google Scholar 

  • Broekhoff, J.C.P., de Boer, J.H.: Studies on pore systems in catalysts: XIV. Calculation of the cumulative distribution functions for slit-shaped pores from the desorption branch of a nitrogen sorption isotherm. J. Catal. 10, 391–400 (1968b)

    CAS  Google Scholar 

  • Cazorla-Amorós, D., Alcañiz-Monge, J., Linares-Solano, A.: Characterization of activated carbon fibers by CO2 adsorption. Langmuir 12, 2820–2824 (1996)

    Google Scholar 

  • Cheng, L.S., Yang, R.T.: Improved Horvath–Kawazoe equations including spherical pore models for calculating micropore size distribution. Chem. Eng. Sci. 49, 2599–2609 (1994)

    CAS  Google Scholar 

  • Cimino, R., Cychosz, K.A., Thommes, M., Neimark, A.V.: Experimental and theoretical studies of scanning adsorption-desorption isotherms. Colloids Surf. A 437, 76–89 (2013)

    CAS  Google Scholar 

  • Coasne, B., Galarneau, A., Pellenq, R.J., Di Renzo, F.: Adsorption, intrusion and freezing in porous silica: the view from the nanoscale. Chem. Soc. Rev. 42, 4141–4171 (2013)

    CAS  Google Scholar 

  • Cole, M.W., Saam, W.F.: Excitation spectrum and thermodynamic properties of liquid films in cylindrical pores. Phys. Rev. Lett. 32, 985–988 (1974)

    CAS  Google Scholar 

  • Cychosz, K.A., Guo, X., Fan, W., Cimino, R., Gor, G.Y., Tsapatsis, M., Neimark, A.V., Thommes, M.: Characterization of the pore structure of three-dimensionally ordered mesoporous carbons using high resolution gas sorption. Langmuir 28, 12647–12654 (2012)

    CAS  Google Scholar 

  • DeBoer, J.H.: Structure and properties of porous materials. In: Everett, D.H., Stone, F.S. (eds.) Colston papers. Butterworths, London (1958)

    Google Scholar 

  • Do, D.D., Do, H.D.: Modeling of adsorption on nongraphitized carbon surface: GCMC simulation studies and comparison with experimental data. J. Phys. Chem. B 110, 17531–17538 (2006)

    CAS  Google Scholar 

  • Dubinin, M.M., Radushkevitch, L.V.: Dokl. Akak. Nauk. SSSR 55, 331 (1947)

    Google Scholar 

  • Dubinin, M.M., Timofeev, D.P.: Zh. Fiz. Khim. 22, 133 (1948)

    CAS  Google Scholar 

  • Everett, D.H.: Adsorption hysteresis. In: Flood, E.A. (ed.) The Solid–Gas Interface, pp. 1055–1113. Decker, New York (1967)

    Google Scholar 

  • Everett, D.H., Powl, J.C.: Adsorption in slit-like and cylindrical micropores in the Henry’s law region. A model for the microporosity of carbons. J. Chem. Soc., Faraday Trans. 1(72), 619–636 (1976)

    Google Scholar 

  • Ferey, G.: Hybrid porous solids. Stud. Surf. Sci. Catal. 168, 327 (2007)

    CAS  Google Scholar 

  • Findenegg, G.H., Gross, S., Michalski, T.: Pore condensation in controlled-pore glass. An experimental test of the Saam–Cole theory. Stud. Surf. Sci. Catal. 87, 71–80 (1994)

    CAS  Google Scholar 

  • Findenegg, G.H., Jähnert, S., Müter, D., Prass, J., Paris, O.: Fluid adsorption in ordered mesoporous solids determined by in situ small angle X-ray scattering. Phys. Chem. Chem. Phys. 12, 7211–7220 (2010)

    Google Scholar 

  • Furmaniak, S., Terzyk, A.P., Gauden, P.A., Harris, P.J.F., Kowalczyk, P.: The influence of carbon surface oxygen groups on Dubinin–Astakhov equation parameters calculated from CO2 adsorption isotherm. J. Phys. 22, 085003 (2010)

    Google Scholar 

  • García-Martínez, J., Cazorla-Amorós, D., Linares-Solano, A.: Further evidence of the usefulness of CO2 adsorption to characterize microporous solids. Stud. Surf. Sci. Catal. 128, 485–494 (2000)

    Google Scholar 

  • Garrido, J., Linares-Solano, A., Martín-Martínez, J.M., Molina-Sabio, M., Rodríguez-Reinoso, F., Torregrosa, R.: Use of N2 vs. CO2 in the characterization of activated carbons. Langmuir 3, 76–81 (1987)

    CAS  Google Scholar 

  • Gelb, L.D., Gubbins, K.E., Radhakrishnan, R., Sliwinska-Bartkowiak, M.: Phase separation in confined systems. Rep. Prog. Phys. 62, 1573–1659 (1999)

    CAS  Google Scholar 

  • Gor, G.Y., Thommes, M., Cychosz, K.A., Neimark, A.V.: Quenched solid density functional theory method for characterization of mesoporous carbons by nitrogen adsorption. Carbon 50, 1583–1590 (2012)

    CAS  Google Scholar 

  • Gor, G.Y., Neimark, A.V.: Adsorption-induced deformation of mesoporous solids: macroscopic approach and density functional theory. Langmuir 27, 6926–6931 (2011)

    CAS  Google Scholar 

  • Gor, G.Y., Paris, O., Prass, J., Russo, P.A., Carott Ribeiro, M.L., Neimark, A.V.: Adsorption of n-pentane on mesoporous silica and adsorbent deformation. Langmuir 29, 8601–8608 (2013)

    CAS  Google Scholar 

  • Gregg, S.J., Sing, K.S.W.: Adsorption. Surface Area and Porosity. Academic Press, London (1982)

    Google Scholar 

  • Grosman, A., Ortega, C.: Capillary condensation in porous materials. Hysteresis and interaction without pore blocking/percolation process. Langmuir 24, 3977–3986 (2008)

    CAS  Google Scholar 

  • Gubbins, K.E.: Theory and simulation of adsorption in micropores. In: Fraissard, J., Conner, C.W. (eds.) Physical Adsorption: Experiment, Theory and Applications, pp. 65–103. Kluwer Academic Publishers, The Netherlands (1997)

    Google Scholar 

  • Hartmann, M., Jung, D.: Biocatalysis with enzymes immobilized on mesoporous hosts: the status quo and future trends. J. Mater. Chem. 20, 844–857 (2010)

    CAS  Google Scholar 

  • Hirscher, M., Panella, B., Schmitz, B.: Metal–organic frameworks for hydrogen storage. Microporous Mesoporous Mater. 129, 335–339 (2010)

    CAS  Google Scholar 

  • Horvath, G., Kawazoe, K.: Method for the calculation of effective pore size distribution in molecular sieve carbon. J. Chem. Eng. Japan 16, 470–475 (1983)

    CAS  Google Scholar 

  • Horikawa, T., Sekida, T., Hayashi, J., Katoh, M., Do, D.D.: A new adsorption–desorption model for water adsorption in porous carbons. Carbon 49, 416–424 (2011)

    CAS  Google Scholar 

  • Hoffmann, F., Cornelius, M., Morell, M., Fröba, M.: Periodic mesoporous organosilicas: past, presence and future. J. Nanosci. Nanotechn. 6, 265–288 (2006)

    CAS  Google Scholar 

  • Hung, F.R., Bhattacharya, S., Coasne, B., Thommes, M., Gubbins, K.E.: Argon and krypton adsorption on templated mesoporous silicas: molecular simulation and experiment. Adsorption 13, 425–437 (2007)

    CAS  Google Scholar 

  • Inayat, A., Knoke, I., Spieker, E., Schwieger, W.: Assemblies of mesoporous FAU-type zeolite nanosheets. Agew. Chem. Int. Ed. 51, 1965–1992 (2012)

    Google Scholar 

  • Jagiello, J., Thommes, M.: Comparison of DFT characterization methods based on N2, Ar, CO2, and H2 adsorption applied to carbons with various pore size distributions. Carbon 42, 1227–1232 (2004)

    CAS  Google Scholar 

  • Jagiello, J., Olivier, J.P.: A simple two-dimensional NLDFT model of gas adsorption in finite carbon pores. Application to pore structure analysis. J. Phys. Chem. C 113, 19382–19385 (2009)

    CAS  Google Scholar 

  • Jagiello, J., Olivier, J.P.: 2D-NLDFT adsorption models for carbon slit-shaped pores with surface energetical heterogeneity and geometrical corrugation. Carbon 55, 70–80 (2013)

    CAS  Google Scholar 

  • Jähnert, S., Müter, D., Prass, J., Zickler, G.A., Paris, O., Findenegg, G.H.: Pore structure and fluid sorption in ordered mesoporous silica. I. Experimental study by in situ small-angle X-ray scattering. J. Phys. Chem. C 113, 15201–15210 (2009)

    Google Scholar 

  • Jaroniec, M., Solovyov, L.A.: Improvement of the Kruk–Jaroniec–Sayari method for pore size analysis of ordered silica with cylindrical mesopores. Langmuir 22, 6757–6760 (2006)

    CAS  Google Scholar 

  • Kaneko, K., Roh, T., Fujimori, T.: Collective interactions of molecules with an interfacial solid. Chem. Lett. 41, 466–475 (2012)

    CAS  Google Scholar 

  • Kaneko, K., Hanzawa, Y., Iiyama, T., Kanda, T., Suzuki, T.: Cluster-mediated water adsorption on carbon nanopores. Adsorption 5, 7–13 (1999)

    CAS  Google Scholar 

  • Kim, T.W., Ryoo, R., Kruk, M., Gierszal, K.P., Jaroniec, M., Kamiya, S., Terasaki, O.: Tailoring the pore structure of SBA-16 silica molecular sieve through the use of copolymer blends and control of synthesis temperature and time. J. Phys. Chem. B 108, 11480–11489 (2004)

    CAS  Google Scholar 

  • Kleitz, F.: Ordered mesoporous materials. In: Ertl, G., Koezinger, H., Schueth, F., Weitkamp, J. (eds.) Handbook of Heterogenous Catalysis, pp. 178–219. Wiley, Weinheim (2008)

    Google Scholar 

  • Kleitz, F., Bérubé, F., Guillet-Nicolas, R., Yang, C.-M., Thommes, M.: Probing adsorption, pore condensation, and hysteresis behavior of pure fluids in three-dimensional cubic mesoporous KIT-6 silica. J. Phys. Chem. C 114, 9344–9355 (2010)

    CAS  Google Scholar 

  • Kleitz, F., Choi, S.H., Ryoo, R.: Cubic Ia3d large mesoporous silica: synthesis and replication to platinum nanowires, carbon nanorods and carbon nanotubes. Chem. Commun. 17, 2136–2137 (2003)

    Google Scholar 

  • Krause, K.M., Thommes, M., Brett, M.J.: Pore analysis of obliquely deposited nanostructures by krypton gas adsorption at 87 K. Microporous Mesoporous Mater. 143, 166–173 (2011)

    CAS  Google Scholar 

  • Kresge, C.T., Roth, W.J.: The discovery of mesoporous molecular sieves from the twenty year perspective. Chem. Soc. Rev. 42, 3663–3670 (2013)

    CAS  Google Scholar 

  • Kruk, M., Celer, E.B., Matos, J.R., Pikus, S., Jaroniec, M.: Synthesis of FDU-1 silica with narrow pore size distribution and tailorable pore entrance size in the presence of sodium chloride. J. Phys. Chem. B 109, 3838–3843 (2005)

    CAS  Google Scholar 

  • Kruk, M., Jaroniec, M., Sayari, A.: Application of large pore MCM-41 molecular sieves to improve pore size analysis using nitrogen adsorption measurements. Langmuir 13, 6267–6273 (1997)

    CAS  Google Scholar 

  • Landers, J., Gor, G.Y., Neimark, A.V.: Density functional theory methods for characterization of porous materials. Colloids Surf. A 437, 3–32 (2013)

    CAS  Google Scholar 

  • Lässig, D., Lincke, J., Moellmer, J., Reichenbach, C., Moeller, A., Gläser, R., Kalies, G., Cychosz, K.A., Thommes, M., Staudt, R., Krautscheid, H.: A microporous copper metal-organic framework with high H2 and CO2 adsorption capacity at ambient pressure. Angew. Chem. Int. Ed. 50, 10344–10348 (2011)

    Google Scholar 

  • Lastoskie, C., Gubbins, K.E., Quirke, N.: Pore size distribution analysis of microporous carbons: a density functional theory approach. J. Phys. Chem. 97, 4786–4796 (1993)

    CAS  Google Scholar 

  • Li, H., Eddaoudi, M., O’Keeffe, M., Yaghi, O.M.: Design and synthesis of an exceptionally stable and highly porous metal–organic framework. Nature 402, 276–279 (1999)

    CAS  Google Scholar 

  • Li, K., Valla, J., Garcia-Martinez, J.: Realizing the commercial potential of hierarchical zeolites: new opportunities in catalytic cracking. ChemCatChem (2013). doi:10.1002/cctc.201300345

    Google Scholar 

  • Libby, B., Monson, P.A.: Adsorption/desorption hysteresis in inkbottle pores: a density functional theory and Monte Carlo simulation study. Langmuir 20, 4289–4294 (2004)

    CAS  Google Scholar 

  • Liu, J.-C., Monson, P.A.: Does water condense in carbon pores? Langmuir 21, 10219–10225 (2005)

    CAS  Google Scholar 

  • Liu, H., Seaton, N.A.: Determination of the connectivity of porous solids from nitrogen sorption measurements—III. Solids containing large mesopores. Chem. Eng. Sci. 49, 1869–1878 (1994)

    CAS  Google Scholar 

  • Liu, H., Zhang, L., Seaton, N.A.: Sorption hysteresis as a probe of pore structure. Langmuir 9, 2576–2582 (1993)

    CAS  Google Scholar 

  • Lowell, S., Shields, J., Thomas, M.A., Thommes, M.: Characterization of Porous Solids and Powders: Surface Area. Pore Size and Density. Springer, Amsterdam (2004)

    Google Scholar 

  • Lodewyckx, P., Vansant, E.F.: Water isotherms of activated carbons with small amounts of surface oxygen. Carbon 37, 1647–1649 (1999)

    CAS  Google Scholar 

  • Lodewyckx, P., Raymundo-Pinera, E., Vaclavikova, M., Berezovska, I., Thommes, M., Beguin, F., Dobos, G.: Suggested improvements in the parameters used for describing the low relative pressure region of the water vapour isotherms of activated carbons. Carbon 60, 556–558 (2013)

    CAS  Google Scholar 

  • Lucena, S.M.P., Paiva, C.A.S., Silvino, P.F.G., Azevedo, D.C.S., Cavalcante, C.L.: The effect of heterogeneity in the randomly etched graphite model for carbon pore size characterization. Carbon 48, 2554–2565 (2010)

    CAS  Google Scholar 

  • Mascotto, S., Wallacher, D., Brandt, A., Hauss, T., Thommes, M., Zickler, G.A., Funari, S., Timmann, A., Smarsly, B.: Analysis of microporosity in ordered mesoporous hierarchically structured silica by combining physisorption with in situ small-angle scattering (SAXS and SANS). Langmuir 25, 12670–12681 (2009)

    CAS  Google Scholar 

  • Mason, G.: The effect of pore space connectivity on the hysteresis of capillary condensation in adsorption–desorption isotherms. J. Colloids Interface Sci. 88, 36–46 (1982)

    CAS  Google Scholar 

  • Mintova, S., Cejka, J.: Micro/mesoporous composites. Stud. Surf. Sci. Catal. 168, 301–326 (2007)

    CAS  Google Scholar 

  • Moellmer, J., Celer, E.B., Luebke, R., Cairns, A.J., Staudt, R., Eddaoudi, M., Thommes, M.: Insights on adsorption characterization of metal-organic frameworks: a benchmark study on the novel soc-MOF. Microporous Mesoporous Mater. 129, 345–353 (2010)

    CAS  Google Scholar 

  • Möller, K., Bein, T.: Pore within pores—how to craft ordered hierarchical zeolites. Science 333, 297–298 (2011)

    Google Scholar 

  • Monson, P.A.: Understanding adsorption/desorption hysteresis for fluids in mesoporous materials using simple molecular models and classical density functional theory. Microporous Mesoporous Mater. 160, 47–66 (2012)

    CAS  Google Scholar 

  • Monson, P.A.: Contact angles, pore condensation and hysteresis: insights from a simple molecular model. Langmuir 24, 12295–12302 (2008)

    CAS  Google Scholar 

  • Naumov, S., Khokhlov, A., Valiullin, R., Karger, J., Monson, P.A.: Understanding capillary condensation and hysteresis in porous silicon: network effects within independent pores. Phys. Rev. E 78, 060601 (2008)

    Google Scholar 

  • Morishige, K., Tateishi, M., Hirose, F.: Change in desorption mechanism from pore blocking to cavitation with temperature for nitrogen in ordered silica with cagelike pores. Langmuir 22, 9220–9224 (2006)

    CAS  Google Scholar 

  • Myasaka, K., Hano, H., Kubota, Y., Lin, Y., Ryoo, R., Takata, M., Kitagawa, S., Neimark, A.V., Terasaki, O.: A stand-alone mesoporous crystal structure model from in situ X-ray diffraction: nitrogen adsorption on 3D cagelike mesoporous silica SBA-16. Chem. Eur. J. 18, 10300 (2012)

    Google Scholar 

  • Na, K., Jo, C., Kim, J., Cho, K., Jung, J., Seo, Y., Messinger, R.J., Chmelka, B.F., Ryoo, R.: Directing zeolite structures into hierarchically nanoporous architectures. Science 333, 328–332 (2011)

    CAS  Google Scholar 

  • Neimark, A.V.: The method of indeterminate Lagrange multipliers in nonlocal density functional theory. Langmuir 11, 4183–4184 (1995)

    CAS  Google Scholar 

  • Neimark, A.V.: Percolation theory of capillary hysteresis phenomena and its application for characterization of porous solids. Stud. Surf. Sci. Catal. 62, 67–74 (1991)

    Google Scholar 

  • Neimark, A.V., Ravikovitch, P.I.: Capillary condensation in MMS and pore structure characterization. Micropor. Mesopor. Mat. 44, 697–707 (2001)

    Google Scholar 

  • Neimark, A.V., Ravikovitch, P.I., Vishnyakov, A.: Bridging scales from molecular simulations to classical thermodynamics: density functional theory of capillary condensation in nanopores. J. Phys. 15, 347–365 (2003)

    CAS  Google Scholar 

  • Neimark, A.V., Lin, Y., Ravikovitch, P.I., Thommes, M.: Quenched solid density functional theory and pore size analysis of micro-mesoporous carbons. Carbon 47, 1617–1628 (2009)

    CAS  Google Scholar 

  • Neimark, A.V., Sing, K.S.W., Thommes, M.: Surface area and porosity. In: Ertl, G., Koezinger, H., Schueth, F., Weitkamp, J. (eds.) Handbook of Heterogeneous Catalysis, pp. 721–737. Wiley, New York (2008)

    Google Scholar 

  • Neimark, A.V., Coudert, F.X., Boutin, A., Fuchs, A.H.: Stress-based model for the breathing of metal–organic framework. Phys. Chem. Lett. 1, 445–449 (2010)

    CAS  Google Scholar 

  • Nguyen, T.X., Cohaut, N., Bae, J.-S., Bhatia, S.K.: New method for atomistic modeling of the microstructure of activated carbons using hybrid reverse Monte Carlo simulation. Langmuir 24, 7912–7922 (2008)

    CAS  Google Scholar 

  • Nguyen, P.T.M., Fan, C., Do, D.D., Nicholson, D.: On the cavitation-like pore blocking in ink-bottle pore: evolution of hysteresis loop with neck size. J. Phys. Chem. C 117, 5475–5484 (2013a)

    CAS  Google Scholar 

  • Nguyen, P.T., Do, D.D., Nicholson, D.: Simulation study of hysteresis of argon adsorption in a conical pore and a constricted cylindrical pore. J. Colloid Interface Sci. 396, 242–250 (2013b)

    CAS  Google Scholar 

  • Ohba, T., Kanoh, H., Kaneko, K.: Cluster-growth-induced water adsorption in hydrophobic carbon nanopores. J. Phys. Chem. B 108, 14964–14969 (2004)

    CAS  Google Scholar 

  • Olivier, J.P.: Improving the models used for calculating the size distribution of micropore volume of activated carbons from adsorption data. Carbon 36, 1469–1472 (1998)

    CAS  Google Scholar 

  • Olivier, J.P., Conklin, W.B., Szombathely, M.V.: Determination of pore size distribution from density functional theory: a comparison of nitrogen and argon results. Stud. Surf. Sci. Catal. 87, 81–89 (1994)

    CAS  Google Scholar 

  • Parlar, M., Yortsos, Y.C.: Percolation theory of vapor adsorption–desorption processes in porous materials. J. Colloid Interface Sci. 124, 162–176 (1988)

    CAS  Google Scholar 

  • Pauporté, T., Rathousky, J.: Electrodeposited mesoporous ZnO thin films as efficient photocatalysts for the degradation of dye pollutants. J. Phys. Chem. C 111, 7639–7644 (2007)

    Google Scholar 

  • Pérez-Ramírez, J., Mitchell, S., Verboekend, D., Milina, M., Michels, N.-L., Krumeich, F., Marti, N., Erdmann, M.: Expanding the horizons of hierarchical zeolites: beyond laboratory curiosity towards industrial revolution. ChemCatChem 3, 1731–1734 (2011)

    Google Scholar 

  • Rasmussen, C.J., Vishnyakov, A., Thommes, M., Smarsly, B.M., Kleitz, F., Neimark, A.V.: Cavitation in metastable liquid nitrogen confined to nanoscale pores. Langmuir 26, 10147–10157 (2010)

    CAS  Google Scholar 

  • Ravikovitch, P.I., Neimark, A.V.: Density functional theory of adsorption in spherical cavities and pore size characterization of templated nanoporous silicas with cubic and three-dimensional hexagonal structures. Langmuir 18, 1550–1560 (2002a)

    CAS  Google Scholar 

  • Ravikovitch, P.I., Neimark, A.V.: Experimental confirmation of different mechanisms of evaporation from ink-bottle type pores: equilibrium, pore blocking, and cavitation. Langmuir 18, 9830–9837 (2002b)

    CAS  Google Scholar 

  • Ravikovitch, P.I., Vishnyakov, A., Russo, R., Neimark, A.V.: Unified approach to pore size characterization of microporous carbonaceous materials from N2, Ar, and CO2 adsorption isotherms. Langmuir 16, 2311–2320 (2000)

    CAS  Google Scholar 

  • Reichenauer, G., Scherer, G.W.: Nitrogen adsorption in compliant materials. J. Non-Cryst. Solids 277, 162–172 (2000)

    CAS  Google Scholar 

  • Reichenauer, G.: Micropore adsorption dynamics in synthetic hard carbons. Adsorption 11, 467–471 (2005)

    Google Scholar 

  • Rios, R.V.R.A., Silvestre-Albero, J., Sepúlveda-Escribano, A., Molina-Sabio, M., Rodríguez-Reinoso, F.: Kinetic restrictions in the characterization of narrow microporosity in carbon materials. J. Phys. Chem. C 111, 3803–3805 (2007)

    CAS  Google Scholar 

  • Rojas, F., Kornhauser, I., Felipe, C., Esparza, J.M., Cordero, S., Domínguez, A., Riccardo, J.L.: Capillary condensation in heterogeneous mesoporous networks consisting of variable connectivity and pore-size correlation. Phys. Chem. Chem. Phys. 4, 2346–2355 (2002)

    CAS  Google Scholar 

  • Roth, W.J., Vartuli, J.C.: Synthesis of mesoporous molecular sieves. Stud. Surf. Sci. Catal. 157, 91–110 (2005)

    CAS  Google Scholar 

  • Rouquerol, J., Avnir, D., Fairbridge, C.W., Everett, D.H., Haynes, J.H., Pernicone, N., Ramsay, J.D.F., Sing, K.S.W., Unger, K.K.: Recommendations for the characterization of porous solids. Pure Appl. Chem. 66, 1739–1748 (1994)

    CAS  Google Scholar 

  • Rouquerol, J., Baron, G., Denoyel, R., Giesche, H., Groen, J., Klobes, P., Levitz, P., Neimark, A.V., Rigby, S., Skudas, R., Sing, K., Thommes, M., Unger, K.: Liquid intrusion and alternative methods for the characterization of macroporous materials. Pure Appl. Chem. 84, 107–136 (2012)

    CAS  Google Scholar 

  • Rouquerol, F., Rouquerol, J., Sing, K.S.W., Llewellyn, P., Maurin, G.: Adsorption by Powders and Porous Solids. Academic Press, London (2013)

    Google Scholar 

  • Rouquerol, J., Llewellyn, P., Rouquerol, F.: Is the BET equation applicable to micropore adsorbents? Stud. Surf. Sci. Catal. 160, 49–56 (2007)

    CAS  Google Scholar 

  • Saito, A., Foley, H.C.: Curvature and parametric sensitivity in models for adsorption in micropores. AIChE J. 37, 429–436 (1991)

    CAS  Google Scholar 

  • Sarkisov, L., Monson, P.A.: Modeling of adsorption and desorption in pores of simple geometry using molecular dynamics. Langmuir 17, 7600–7604 (2001)

    CAS  Google Scholar 

  • Sel, O., Brandt, A., Wallacher, D., Thommes, M., Smarsly, B.: Pore hierarchy in mesoporous silicas evidenced by in situ SANS during nitrogen physisorption. Langmuir 23, 4724–4727 (2007)

    CAS  Google Scholar 

  • Seaton, N.A., Walton, J.P.R.B., Quirke, N.: A new analysis method for the determination of the pore size distribution of porous carbons from nitrogen adsorption measurements. Carbon 27, 853–861 (1989)

    CAS  Google Scholar 

  • Serrano, D.P., Aguado, J., Morales, G., Rodríguez, J.M., Peral, A., Thommes, M., Epping, J.D., Chmelka, B.F.: Molecular and meso- and macroscopic properties of hierarchical nanocrystalline ZSM-5 zeolite prepared by seed silanization. Chem. Mater. 21, 641–654 (2009)

    CAS  Google Scholar 

  • Shpeizer, B.G., Bakhmutov, V.I., Clearfield, A.: Supermicroporous alumina–silica zinc oxides. Microporous Mesoporous Mater. 90, 81–86 (2006)

    CAS  Google Scholar 

  • Shpeizer, B.G., Bakhmoutov, V.I., Zhang, P., Prosvirin, A.V., Dunbar, K.R., Thommes, M., Clearfield, A.: Transition metal–alumina/silica supermicroporous composites with tunable porosity. Colloids Surfaces A 357, 105–115 (2010)

    CAS  Google Scholar 

  • Shen, J., Monson, P.A.: A molecular model of adsorption in a dilute semiflexible porous network. Mol. Phys. 100, 2031–2039 (2002)

    CAS  Google Scholar 

  • Silvestre-Albero, J., Silvestre-Albero, A., Rodríguez-Reinoso, F., Thommes, M.: Physical characterization of activated carbons with narrow microporosity by nitrogen (77.4 K), carbon dioxide (273 K) and argon (87.3 K) adsorption in combination with immersion calorimetry. Carbon 50, 3128–3133 (2012)

    CAS  Google Scholar 

  • Sing, K.S.W., Everett, D.H., Haul, R.A.W., Moscou, L., Pierotti, R.A., Rouquerol, J., Siemieniewska, T.: Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl. Chem. 57, 603–619 (1985)

    CAS  Google Scholar 

  • Soares Maia, D.A., de Oliveira, J.C.A., Toso, J.P., Sapag, K., López, R.H., Azevedo, D.C.S., Cavalcante, C.L., Zgrablich, G.: Characterization of the PSD of activated carbons from peach stones for separation of combustion gas mixtures. Adsorption 17, 853–861 (2011)

    CAS  Google Scholar 

  • Tanaka, H., Hiratsuka, T., Nishiyama, N., Mori, K., Miyahara, M.T.: Capillary condensation in mesoporous silica with surface roughness. Adsorption 19, 631–641 (2013)

    CAS  Google Scholar 

  • Stoeckli, F., Lavanchy, A.: The adsorption of water by active carbons, in relation to their chemical and structural properties. Carbon 38, 475–477 (2000)

    CAS  Google Scholar 

  • Tarazona, P.: Free-energy density functional for hard spheres. Phys. Rev. A 31, 2672–2679 (1985)

    CAS  Google Scholar 

  • Tarazona, P., Evans, R.: A simple density functional theory for inhomogeneous liquids. Mol. Phys. 52, 847–857 (1984)

    CAS  Google Scholar 

  • Thommes, M.: Physical adsorption characterization of nanoporous materials. Chem. Ing. Tech. 82, 1059–1073 (2010)

    CAS  Google Scholar 

  • Thommes, M., Findenegg, G.H.: Pore condensation and critical-point shift of a fluid in controlled-pore glass. Langmuir 10, 4270–4277 (1994)

    CAS  Google Scholar 

  • Thommes, M.: Physical adsorption characterization of ordered and amorphous mesoporous materials. In: Lu, G.Q., Zhao, X.S. (eds.) Nanoporous Materials Science and Engineering, pp. 317–364. World Scientific, London (2004)

    Google Scholar 

  • Thommes, M.: Textural characterization of zeolites and ordered mesoporous materials by physical adsorption. Stud. Surf. Sci. Catal. 168, 495–523 (2007)

    CAS  Google Scholar 

  • Thommes, M., Cychosz, K.A., Neimark, A.V.: Advanced physical adsorption characterization of nanoporous carbons. In: Tascon, J.M.D. (ed.) Novel Carbon Adsorbents, pp. 107–145. Elsevier, Oxford (2012a)

    Google Scholar 

  • Thommes, M., Mitchell, S., Pérez-Ramírez, J.: Surface and pore structure assessment of hierarchical MFI zeolites by advanced water and argon sorption studies. J. Phys. Chem. C 116, 18816–18823 (2012b)

    CAS  Google Scholar 

  • Thommes, M., Nishyama, N., Tanaka, S.: Aspects of a novel method for the pore size analysis of thin silica films based on krypton adsorption at liquid argon temperature (87.3 K). Stud. Surf. Sci. Catal. 165, 551–554 (2007)

    CAS  Google Scholar 

  • Thommes, M., Smarsly, B., Groenewolt, M., Ravikovitch, P.I., Neimark, A.V.: Adsorption hysteresis of nitrogen and argon in pore networks and characterization of novel micro- and mesoporous silicas. Langmuir 22, 756–764 (2006)

    CAS  Google Scholar 

  • Thommes, M., Morlay, C., Ahmad, R., Joly, J.P.: Assessing surface chemistry and pore structure of active carbons by a combination of physisorption (H2O, Ar, N2, CO2). XPS and TPD-MS. Adsorption 17, 653–661 (2011)

    CAS  Google Scholar 

  • Thommes, M., Morell, J., Cychosz, K.A., Fröba, M.: Combining nitrogen, argon, and water adsorption for advanced characterization of ordered mesoporous carbons (CMKs) and periodic mesoporous organosilicas (PMOs). Langmuir (2013). doi:10.1021/la402832b

    Google Scholar 

  • Thommes, M., Köhn, R., Fröba, M.: Sorption and pore condensation behavior of pure fluids in mesoporous MCM-48 silica, MCM-41 silica, SBA-15 silica and controlled pore glass at temperatures above and below the bulk triple point. Appl. Surf. Sci. 196, 239–249 (2002)

    Google Scholar 

  • Thomson, K.T., Gubbins, K.E.: Modeling structural morphology of microporous carbons by reverse Monte Carlo. Langmuir 16, 5761–5773 (2000)

    CAS  Google Scholar 

  • Turner, A.R., Quirke, N.A.: Grand canonical Monte Carlo study of adsorption on graphitic surfaces with defects. Carbon 36, 1439–1446 (1998)

    CAS  Google Scholar 

  • Valiullin, R., Naumov, S., Galvosas, P., Karger, J., Woo, H.J., Porcheron, F., Monson, P.A.: Exploration of molecular dynamics during transient sorption of fluids in mesoporous materials. Nature 443, 965–968 (2006)

    CAS  Google Scholar 

  • Valiullin, R., Kaerger, J.: The impact of mesopores on mass transfer in nanoporous materials: evidence of diffusion measurement by NMR. Chem. Ing. Tech. 83, 166 (2011)

    CAS  Google Scholar 

  • Van Bemmelen, J.M.: Die absorption das wasser in den kolloiden, besonders in dem gel der kieselsäure. Z. Anorg. Allg. Chem. 13, 233–356 (1897)

    Google Scholar 

  • Vishnyakov, A., Neimark, A.V.: Monte Carlo simulation test of pore blocking effects. Langmuir 19, 3240–3247 (2003)

    CAS  Google Scholar 

  • Vishnyakov, A., Ravikovitch, P.I., Neimark, A.V.: Molecular level models for CO2 sorption in nanopores. Langmuir 15, 8736–8742 (1999)

    CAS  Google Scholar 

  • Wall, G.C., Brown, R.J.C.: The determination of pore-size distributions from sorption isotherms and mercury penetration in interconnected pores: the application of percolation theory. J. Colloid Interface Sci. 82, 141–149 (1981)

    CAS  Google Scholar 

  • Woo, H.-J., Sarkisov, L., Monson, P.A.: Mean-field theory of fluid adsorption in a porous glass. Langmuir 17, 7472–7475 (2001)

    CAS  Google Scholar 

  • Zhang, X., Liu, D., Xu, D., Asahina, S., Cychosz, K.A., Agrawal, K.V., AlWahedi, Y., Bhan, A., AlHashimi, S., Terasaki, O., Thommes, M., Tsapatsis, M.: Synthesis of self-pillared nanosheets by repetitive branching. Science 336, 1684–1687 (2012)

    CAS  Google Scholar 

  • Zhao, D., Wang, Y.: The synthesis of mesoporous molecular sieves. Stud. Surf. Sci. Catal. 168, 241–300 (2007)

    CAS  Google Scholar 

  • Zhu, Y., Murali, S., Stoller, M.D., Ganesh, K.J., Cai, W., Ferreira, P.J., Pirkle, A., Wallace, R.M., Cychosz, K.A., Thommes, M., Su, D., Stach, E.A., Ruoff, R.S.: Carbon-based supercapacitors produced by activation of graphene. Science 332, 1537–1541 (2011)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Thommes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thommes, M., Cychosz, K.A. Physical adsorption characterization of nanoporous materials: progress and challenges. Adsorption 20, 233–250 (2014). https://doi.org/10.1007/s10450-014-9606-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-014-9606-z

Keywords

Navigation