, Volume 20, Issue 2–3, pp 225–231 | Cite as

Adsorption technology for CO2 separation and capture: a perspective



The capture of CO2 from process and flue gas streams and subsequent sequestration was first proposed as a greenhouse gas mitigation option in the 1990s. This proposal spawned a series of laboratory and field tests in CO2 capture which has now grown into a major world-wide research effort encompassing a myriad of capture technologies and ingenious flow sheets integrating power production and carbon capture. Simultaneously, the explosive growth in materials science in the last two decades has produced a wealth of new materials and knowledge providing us with new avenues to explore to fine tune CO2 adsorption and selectivity. Laboratory and field studies over the last decade have explored the synergy of process and materials to produce numerous CO2 capture technologies and materials based on cyclic adsorption processes. In this brief perspective, we look at some of these developments and comment on the application and limitations of adsorption process to CO2 capture. We identify major engineering obstacles to overcome as well as potential breakthroughs necessary to achieve commercialization of adsorption processes for CO2 capture. Our perspective is primarily restricted to post-combustion flue gas capture and CO2 capture from natural gas.


CO2 capture Adsorption processes CO2 adsorbents Pressure swing adsorption Temperature swing adsorption 


  1. Beaver, M.G., Sircar, S.: Adsorption technology for direct recovery of compressed, pure CO2 from a flue gas without pre-compression or pre-drying. Adsorption 16, 103–111 (2010). doi:10.1007/s10450-010-9219-0 CrossRefGoogle Scholar
  2. Bhown, A.S.A.S., Freeman, B.C.B.C.: Analysis and status of post-combustion carbon dioxide capture technologies. Environ. Sci. Technol. 45, 8624–8632 (2011). doi:10.1021/es104291d CrossRefGoogle Scholar
  3. Bosoaga, A., Masek, O., Oakey, J.E.: CO2 capture technologies for cement industry. Energy Procedia 1, 133–140 (2009). doi:10.1016/j.egypro.2009.01.020 CrossRefGoogle Scholar
  4. Casas, N., Schell, J., Joss, L., Mazzotti, M.: A parametric study of a PSA process for pre-combustion CO2 capture. Sep. Purif. Technol. 104, 183–192 (2013). doi:10.1016/j.seppur.2012.11.018 CrossRefGoogle Scholar
  5. Choi, S., Drese, J.H., Jones, C.W.: Adsorbent materials for carbon dioxide capture from large anthropogenic point sources. ChemSusChem 2, 796–854 (2009). doi:10.1002/cssc.200900036 CrossRefGoogle Scholar
  6. Colburn, A.P., Dodge, B.F.: Adsorption process for removal of carbon dioxide from the atmosphere of a submarine. USA Patent 2545194 (1951)Google Scholar
  7. Collins, J.J.: Bulk Separation of carbon dioxide from natural gas. USA Patent 3751878 (1973)Google Scholar
  8. Ebner, A.D., Ritter, Ja: State-of-the-art adsorption and membrane separation processes for carbon dioxide production from carbon dioxide emitting industries. Sep. Sci. Technol. 44, 1273–1421 (2009). doi:10.1080/01496390902733314 CrossRefGoogle Scholar
  9. Grande, C., Rodrigues, A.E.: Electric swing adsorption for CO2 removal from flue gases. Int. J. Greenhouse Gas Control 2, 194–202 (2007a). doi:10.1016/S1750-5836(07)00116-8 Google Scholar
  10. Grande, C.A., Ribeiro, R.P.P.L., Rodrigues, A.E.: CO2 capture from NGCC power stations using electric swing adsorption (ESA). Energy Fuels 23, 2797–2803 (2009). doi:10.1021/ef8010756 CrossRefGoogle Scholar
  11. Grande, C.A., Rodrigues, A.E.: Layered vacuum pressure-swing adsorption for biogas upgrading. Ind. Eng. Chem. Res. 46, 7844–7848 (2007b). doi:10.1021/ie070942d CrossRefGoogle Scholar
  12. Haghpanah, R., Nilam, R., Rajendran, A., Farooq, S., Karimi, I.A.: Cycle synthesis and optimization of a VSA process for postcombustion CO2 capture. AIChE J. 00, n/a–n/a (2013). doi:10.1002/aic.14192
  13. Haraoka, T., Mogi, Y., Saima, H.: PSA system for the recovery of carbon dioxide from blast furnace gas in steel works the influence of operation conditions on CO2 separation. Kagaku Kogaku Ronbunshu 39, 439–444 (2013). doi:10.1252/kakoronbunshu.39.439 CrossRefGoogle Scholar
  14. Ishibashi, M., Ota, H., Akutsu, N., Umeda, S., Tajika, M., Izumi, J., Yasutake, A., Kabata, T., Kageyama, Y.: Technology for removing carbon dioxide from power plant flue gas by the physical adsorption method. Energy Convers. Manag. 37, 929–933 (1996)CrossRefGoogle Scholar
  15. Li, G., Xiao, P., Xu, D., Webley, Pa: Dual mode roll-up effect in multicomponent non-isothermal adsorption processes with multilayered bed packing. Chem. Eng. Sci. 66, 1825–1834 (2011). doi:10.1016/j.ces.2011.01.023 CrossRefGoogle Scholar
  16. Liu, W., An, H., Qin, C., Yin, J., Wang, G., Feng, B., Xu, M.: Performance enhancement of calcium oxide sorbents for cyclic CO2 capture—a review. Energy Fuels 26, 2751–2767 (2012a)CrossRefGoogle Scholar
  17. Liu, Z., Wang, L., Kong, X., Li, P., Yu, J., Rodrigues, A.E.: Onsite CO2 capture from flue gas by an adsorption process in a coal-fired power plant. Ind. Eng. Chem. Res. 51, 7355–7363 (2012b). doi:10.1021/ie3005308 CrossRefGoogle Scholar
  18. Lively, R.P., Chance, R.R., Kelley, B.T., Deckman, H.W., Drese, J.H., Jones, C.W., Koros, W.J.: Hollow fiber adsorbents for CO2 removal from flue gas. Ind. Eng. Chem. Res. 48, 7314–7324 (2009). doi:10.1021/ie9005244 CrossRefGoogle Scholar
  19. Maring, B., Webley, P.A.: A new simplified pressure/vacuum swing adsorption model for rapid adsorbent screening for CO2 capture applications. Int. J. Greenhouse Gas Control 15, 16–31 (2013)CrossRefGoogle Scholar
  20. Markewitz, P., Kuckshinrichs, W., Leitner, W., Linssen, J., Zapp, P., Bongartz, R., Thomas, E.M.: Worldwide innovations in the development of carbon capture technologies and the utilization of CO2. Energy Environ. Sci. 5, 7281–7305 (2012). doi:10.1039/c2ee03403d CrossRefGoogle Scholar
  21. Murakami, Y., Lijima, A., Ward, J.W.: New Developments in Zeolite Science and Technology. In: 7th International Zeolite Conference, Tokyo 1986. Studies in Surface Science and Catalysis. Elsevier Science LtdGoogle Scholar
  22. Oexmann, J., Kather, A., Linnenberg, S., Liebenthal, U.: Post-combustion CO2 capture: chemical absorption processes in coal-fired steam power plants. Greenhouse Gases Sci. Technol. 98, 80–98 (2012). doi:10.1002/ghg.1273 CrossRefGoogle Scholar
  23. Qader, A., Hooper, B., Stevens, G., Kentish, S., Webley, P.: Demonstrating carbon capture. Chem. Eng. 821, 30–31 (2009)Google Scholar
  24. Rao, V.R., Krishnamurthy, S., Guntuka, S.K., Rajendran, A., Ullah, M.A., Sharratt, P., Karimi, I.A., Farooq, S.: A pilot plant study of a VSA process for CO2 capture from power plant flue gas. Paper presented at the AIChE Annual Meeting, Pittsburgh, PA, USA (2012)Google Scholar
  25. Rubin, E.S., Mantripragada, H., Marks, A., Versteeg, P., Kitchin, J.: The outlook for improved carbon capture technology. Prog. Energy Combust. Sci. 38, 630–671 (2012). doi:10.1016/j.pecs.2012.03.003 CrossRefGoogle Scholar
  26. Shang, J., Li, G., Singh, R., Gu, Q., Nairn, K.M., Bastow, T.J., Medhekar, N., Doherty, C.M., Hill, A.J., Liu, J.Z., Webley, P.A.: Discriminative Separation of Gases by a “Molecular Trapdoor” Mechanism in Chabazite Zeolites. J. Am. Chem. Soc. 134, 19246–19253 (2012). doi: Google Scholar
  27. Sjostrom, S., Krutka, H., Starns, T., Campbell, T.: Pilot test results of post-combustion CO2 capture using solid sorbents. Energy Procedia 4, 1584–1592 (2011). doi:10.1016/j.egypro.2011.02.028 CrossRefGoogle Scholar
  28. Spoorthi, G., Thakur, R.S., Kaistha, N., Rao, D.P.: Process intensification in PSA processes for upgrading synthetic landfill and lean natural gases. Adsorption 17, 121–133 (2010). doi:10.1007/s10450-010-9302-6 CrossRefGoogle Scholar
  29. Takeguchi, T., Tanakulrungsank, W., Inui, T.: Separation and/or concentration of CO2 from CO2/N2 gaseous mixture by pressure swing adsorption using metal-incorporated microporous crystals with high surface area. Gas Sep. Purif. 7, 3–9 (1993). doi:10.1016/0950-4214(93)85013-L CrossRefGoogle Scholar
  30. Tlili, N., Grévillot, G., Vallières, C.: Carbon dioxide capture and recovery by means of TSA and/or VSA. Int. J. Greenhouse Gas Control 3, 519–527 (2009). doi:10.1016/j.ijggc.2009.04.005 CrossRefGoogle Scholar
  31. van Selow, E.R., Cobden, P.D., van den Brink, R.W., Hufton, J.R., Wright, A.: Performance of sorption-enhanced water-gas shift as a pre-combustion CO2 capture technology. Energy Procedia 1, 689–696 (2009). doi:10.1016/j.egypro.2009.01.091 CrossRefGoogle Scholar
  32. Voss, C.: Applications of pressure swing adsorption technology. Adsorption 11, 527–529 (2005). doi:10.1007/s10450-005-5979-3 CrossRefGoogle Scholar
  33. Wang, L., Yang, Y., Shen, W., Kong, X., Li, P., Yu, J., Rodrigues, A.E.: CO2 capture from flue gas in an existing coal-fired power plant by pilot-scale two successive VPSA units. Ind. Eng. Chem. Res. 130514043648000 (2013). doi:10.1021/ie4009716
  34. Wang, M., Lawal, a, Stephenson, P., Sidders, J., Ramshaw, C.: Post-combustion CO2 capture with chemical absorption: a state-of-the-art review. Chem. Eng. Res. Des. 89, 1609–1624 (2011). doi:10.1016/j.cherd.2010.11.005 CrossRefGoogle Scholar
  35. Wright, A., White, V., Hufton, J., Selow, E.V., Hinderink, P.: Reduction in the cost of pre-combustion CO2 capture through advancements in sorption-enhanced water-gas-shift. Energy Procedia 1, 707–714 (2009). doi:10.1016/j.egypro.2009.01.093 CrossRefGoogle Scholar
  36. Xiao, G., Xiao, P., Lee, S., Webley, P.A.: CO2 capture at elevated temperatures by cyclic adsorption processes. RSC Advances 2, 5291–5297 (2012). doi:10.1039/c2ra20174g CrossRefGoogle Scholar
  37. Xu, D., Xiao, P., Zhang, J., Li, G., Xiao, G., Webley, P.A., Zhai, Y.: Effects of water vapor on CO2 capture with vacuum swing adsorption using activated carbon. Chem. Eng. J. 230, 64–72 (2013)CrossRefGoogle Scholar
  38. Zhao, A., Samanta, A., Sarkar, P., Gupta, R.: Carbon dioxide adsorption on amine-impregnated mesoporous SBA-15 sorbents: experimental and kinetics study. Ind. Eng. Chem. Res. 52, 6480–6491 (2013a). doi:10.1021/ie3030533 CrossRefGoogle Scholar
  39. Zhao, C., Chen, X., Anthony, E.J., Jiang, X., Duan, L., Wu, Y., Dong, W., Zhao, C.: Capturing CO2 in flue gas from fossil fuel-fired power plants using dry regenerable alkali metal-based sorbent. Prog. Energy Combust. Sci. (2013b). doi:10.1016/j.pecs.2013.05.001 Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Chemical and Biomolecular Engineering, Cooperative Research Centre for Greenhouse Gas Technologies (CO2CRC)The University of MelbourneParkvilleAustralia

Personalised recommendations