Skip to main content
Log in

Modeling adsorption in binary associating solvents using the extended MPTA model

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

Application of the MPTA model has been extended to associative liquid adsorption. The MPTA model describes fluid–fluid interactions using an equation of state (EoS) term, and fluid–solid interactions using a potential equation. In order to extend the application to associative liquid adsorption, an association term has been considered for fluid–fluid interactions. Sixteen binary mixtures containing associating and non-associating components in equilibrium with various adsorbents have been studied; fluid–fluid interactions have been modeled using the Peng–Robinson, Soave–Redlich–Kwong, volume-translated SRK and CPA equations of state, while the effects of fluid–solid interactions have been taken into account using Dubinin–Radushkevich–Astakhov (DRA) and Steele potential functions. The model parameters have been obtained by fitting the model to experimental data on surface excess. For the studied systems, the accuracy of fitted isotherms has been found to be more dependent on the fluid–solid potential equation rather than the applied EoS. Calculations show that the SRK equation is a suitable choice for non-associating systems, while the CPA equation is found to be more appropriate for associating systems, as would be expected. The results also show that the Steele potential function is in better agreement with experimental data than the DRA potential function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AARD :

Average absolute relative deviation, \(\frac{100}{N}\sum {\left| {\frac{{n_{i}^{e,\exp } - n_{i}^{e,calc} }}{{n_{i}^{e,\exp } }}} \right|}\)

N :

Number of experimental data

P :

Pressure (bar)

P(z):

Pressure at given z value (bar)

x B :

Mole fraction of bulk phase

x(z):

Mole fraction of adsorbed phase at given z value

z :

Distance (cm) or pore volume (cm3/gads)

ε i :

Adsorption potential of “i” specie (J/mol)

φ i :

Fugacity coefficient of “i” specie

μ i :

Chemical potential of “i” specie (J/mol)

ρ(z):

Density of adsorbed phase at given z value

ρ B :

Density of bulk phase

\(\varGamma_{i}^{(n)}\) :

Surface excess of “i” specie (mol/gads)

AARD:

Absolute average relative deviation

ASST:

Adsorbate solid solution theory

CPA:

Cubic plus association

DRA:

Dubinin–Radushkevich–Astakhov

EoS:

Equation of state

IAST:

Ideal adsorbed solution theory

MPTA:

Multicomponent potential theory of adsorption

PAH:

Polycyclic aromatic hydrocarbon

PR:

Peng–Robinson

PTA:

Potential theory of adsorption

RAST:

Real adsorbed solution theory

SRK:

Soave–Redlich–Kwong

VOC:

Volatile organic compound

VST:

Vacancy solution theory

VT-SRK:

Volume translated Soave–Redlich–Kwong

References

  • Balilehvand, S., Hashemianzadeh, S.M., Razavi, S.S., Karimi, H.: Investigation of hydrogen and methane adsorption/separation on silicon nanotubes: a hierarchial multiscale method from quantum mechanics to molecular simulation. Adsorption 18, 13–22 (2012)

    Article  CAS  Google Scholar 

  • Bjørner, M.G., Shapiro, A.A., Kontogeorgis, G.M.: Potential theory of adsorption for associating mixtures: possibilities and limitations. Ind. Eng. Chem. Res. (2013). doi:10.1021/ie302144t

  • Berti, C., Ulpig, P., Schulz, A.: Correlation and prediction of adsorption from liquid mixtures on solids by use of GE-models. Adsorption 6, 79–91 (2000)

    Article  CAS  Google Scholar 

  • Chae, K., Violi, A.: Mutual diffusion coefficients of heptane isomers in nitrogen: a molecular dynamics study. Chem. Phys. 134, 044537 (2011)

    Article  Google Scholar 

  • Daifullah, A.A.M., Girgis, B.S.: Impact of surface characteristics of activated carbon on adsorption of BTEX. Colloids Surf. A 214(1–3), 181–193 (2003). doi:10.1016/S0927-7757(02)00392-8

    Article  CAS  Google Scholar 

  • Duan, Q.Y., Gupta, V.K., Sorooshian, S.: Shuffled complex evolution approach for effective and efficient global minimization. Optim. Theory Appl. 76(3), 501–521 (1993)

    Article  Google Scholar 

  • Dubinin, M., Astakhov, V.: Description of adsorption equilibria of vapors on zeolites over wide ranges of temperature and pressure. Adv. Chem. Ser. 102, 69–85 (1971)

    Google Scholar 

  • Frahn, J., Malsch, G., Matuschewski, H., Schedler, U., Schwarz, H.-H.: Separation of aromatic/aliphatic hydrocarbons by photo-modified poly(acrylonitrile) membranes. J. Membr. Sci. 234(1–2), 55–65 (2004). doi:10.1016/j.memsci.2003.12.017

    Article  CAS  Google Scholar 

  • Fukuchi, K.: Application of vacancy solution theory to adsorption from dilute aqueous solutions. J. Chem. Eng. Jpn. 15, 316 (1982)

    Article  CAS  Google Scholar 

  • Goworek, J., Nieradka, A.: Adsorption from ternary liquid mixtures on partially dehydroxylated silica gel. J. Colloid Interface Sci. 180(2), 371–376 (1996). doi:10.1006/jcis.1996.0315

    Article  CAS  Google Scholar 

  • Kalies, G., Bräuer, P., Rouquerol, F.: Prediction of ternary liquid adsorption on solids from binary data. J. Colloid Interface Sci. 229(2), 407–417 (2000). doi:10.1006/jcis.2000.7036

    Article  CAS  Google Scholar 

  • Kalies, G., Rockmann, R., Tuma, D., Gapke, J.: Ordered mesoporous solids as model substances for liquid adsorption. Appl. Surf. Sci. 256(17), 5395–5398 (2010). doi:10.1016/j.apsusc.2009.12.091

    Article  CAS  Google Scholar 

  • Khan, A.R., Riazi, M.R., Al-Roomi, Y.A.: A thermodynamic model for liquid adsorption isotherms. Sep. Purif. Technol. 18(3), 237–250 (2000). doi:10.1016/S1383-5866(00)00052-6

    Article  CAS  Google Scholar 

  • Khanal, O.R.: Organics in atmospheric particulates. Ph.D thesis, The University of Auckland (2003)

  • Kontogeorgis, G.M., Yakoumis, I.V., Meijer, H., Hendriks, E., Moorwood, T.: Multicomponent phase equilibrium calculations for water–methanol–alkane mixtures. Fluid Phase Equilib. 158–160, 201–209 (1999). doi:10.1016/S0378-3812(99)00060-6

    Article  Google Scholar 

  • Lee, C.S., Belfort, G.: Thermodynamics of multiorganic solute adsorption from dilute aqueous solution. 1. The use of an equation of state. Ind. Eng. Chem. Res. 27(6), 951–956 (1988). doi:10.1021/ie00078a010

    Article  CAS  Google Scholar 

  • Lin, S.H., Huang, C.Y.: Adsorption of BTEX from aqueous solutions by macroreticular resins. Hazard. Mater. 70, 21–37 (1999)

    Article  CAS  Google Scholar 

  • Lin, H., Duan, Y.-Y., Zhang, T., Huang, Z.-M.: Volumetric property improvement for the Soave–Redlich–Kwong equation of state. Ind. Eng. Chem. Res. 45(5), 1829–1839 (2006). doi:10.1021/ie051058v

    Article  CAS  Google Scholar 

  • Long, C., Li, Q., Li, Y., Liu, Y., Li, A., Zhang, Q.: Adsorption characteristics of benzene–chlorobenzene vapor on hypercrosslinked polystyrene adsorbent and a pilot-scale application study. Chem. Eng. J. 160(2), 723–728 (2010). doi:10.1016/j.cej.2010.03.074

    Article  CAS  Google Scholar 

  • Monsalvo, M.A., Shapiro, A.A.: Modeling adsorption of binary and ternary mixtures on microporous media. Fluid Phase Equilib. 254(1–2), 91–100 (2007a). doi:10.1016/j.fluid.2007.02.006

    Article  CAS  Google Scholar 

  • Monsalvo, M.A., Shapiro, A.A.: Prediction of adsorption from liquid mixtures in microporous media by the potential theory. Fluid Phase Equilib. 261(1–2), 292–299 (2007b). doi:10.1016/j.fluid.2007.07.067

    Article  CAS  Google Scholar 

  • Monsalvo, M.A., Shapiro, A.A.: Modeling adsorption of liquid mixtures on porous materials. J. Colloid Interface Sci. 333(1), 310–316 (2009a). doi:10.1016/j.jcis.2009.01.055

    Article  CAS  Google Scholar 

  • Monsalvo, M.A., Shapiro, A.A.: Study of high-pressure adsorption from supercritical fluids by the potential theory. Fluid Phase Equilib. 283(1–2), 56–64 (2009b). doi:10.1016/j.fluid.2009.05.015

    Article  CAS  Google Scholar 

  • Myers, A.L., Prausnitz, J.M.: Thermodynamics of mixed-gas adsorption. AIChE J. 11(1), 121–127 (1965). doi:10.1002/aic.690110125

    Article  CAS  Google Scholar 

  • Nevin Yalcin, V.S.: Study of surface area and porosity of activated carbon prepared from rice husk. Carbon 38, 1943–1945 (2000)

    Article  Google Scholar 

  • Peng, D.-Y., Robinson, D.B.: A new two-constant equation of state. Ind. Eng. Chem. Fundam. 15(1), 59–64 (1976). doi:10.1021/i160057a011

    Article  CAS  Google Scholar 

  • Poiling, B.E., Prausnitz, J.M., O’Connell, J.P.: The Properties of Gases and Liquids, 5th edn. McGraw-Hill, New York (2000)

    Google Scholar 

  • Rockmann, R., Kalies, G.: Liquid adsorption of n-octane/octanol/ethanol on SBA-16 silica. J. Colloid Interface Sci. 315(1), 1–7 (2007). doi:10.1016/j.jcis.2007.06.029

    Article  CAS  Google Scholar 

  • Ruthven, D.M.: Principles of adsorption and adsorption processes. Wiley, New York (1976)

    Google Scholar 

  • Sene, L., Converti, A., Felipe, M.G.A., Zilli, M.: Sugarcane bagasse as alternative packing material for biofiltration of benzene polluted gaseous streams: a preliminary study. Bioresour. Technol. 83, 153–157 (2002)

    Article  CAS  Google Scholar 

  • Shapiro, A.A., Stenby, E.H.: Potential theory of multicomponent adsorption. J. Colloid Interface Sci. 201(2), 146–157 (1998). doi:10.1006/jcis.1998.5424

    Article  CAS  Google Scholar 

  • Soares, A., Albergaria, J.T., Domingues, V.F., Alvim-Ferraz, M.D.M., Delerue-Matos, C.: Remediation of soils combining soil vapor extraction and bioremediation: benzene. Chemosphere 80, 823–828 (2010)

    Article  CAS  Google Scholar 

  • Soave, G.: Equilibrium constants from a modified Redlich–Kwong equation of state. Chem. Eng. Sci. 27(6), 1197–1203 (1972). doi:10.1016/0009-2509(72)80096-4

    CAS  Google Scholar 

  • Steele, W.A.: The interaction of gases with solid surfaces. Pergamon, Oxford (1974)

    Google Scholar 

  • Stoeckli, F.: Recent developments in Dubinin’s theory. Carbon 36(4), 363–368 (1998). doi:10.1016/S0008-6223(97)00194-2

    Article  CAS  Google Scholar 

  • Suzuki, M.: Adsorption engineering. Kodansha (1990)

  • Świątkowski, A., Deryło-Marczewska, A., Goworek, J., Błażewicz, S.: Study of adsorption from binary liquid mixtures on thermally treated activated carbon. Appl. Surf. Sci. 236(1–4), 313–320 (2004). doi:10.1016/j.apsusc.2004.05.003

    Google Scholar 

  • Tham, Y.J., Latif, P.A., Abdullah, A.M., Shamala-Devi, A., Taufiq-Yap, Y.H.: Performances of toluene removal by activated carbon derived from durian shell. Bioresour. Technol. 102, 724–728 (2011)

    Article  CAS  Google Scholar 

  • Wells, A.F., Wells, A.: Structural inorganic chemistry, vol. 707. Clarendon Press, Oxford (1975)

  • Yin, C.Y., Aroua, M.K., Daud, W.M.A.W.: Review of modification of activated carbon for enhancing contaminant uptakes from aqueous solutions. Sep. Purif. Technol. 52, 403–415 (2007)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors appreciate precious assistance from Professor Alexander A. Shapiro and wish to acknowledge his hints and co-operation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Reza Dehghani.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 64 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Naseri, A.A., Dehghani, M.R. & Behzadi, B. Modeling adsorption in binary associating solvents using the extended MPTA model. Adsorption 20, 555–563 (2014). https://doi.org/10.1007/s10450-013-9600-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-013-9600-x

Keywords

Navigation