Skip to main content
Log in

Design of a H2 PSA for cogeneration of ultrapure hydrogen and power at an advanced integrated gasification combined cycle with pre-combustion capture

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

A novel hydrogen pressure swing adsorption system has been studied that is applied to an advanced integrated gasification combined cycle plant for cogenerating power and ultrapure hydrogen (99.99+ mol%) with CO2 capture. In designing the H2 PSA, it is essential to increase the recovery of ultrapure hydrogen product to its maximum since the power consumption for compressing the H2 PSA tail gas up to the gas turbine operating pressure should be minimised to save the total auxiliary power consumption of the advanced IGCC plant. In this study, it is sought to increase the H2 recovery by increasing the complexity of the PSA step configuration that enables a PSA cycle to have a lower feed flow to one column for adsorption and more pressure equalisation steps. As a result the H2 recovery reaches a maximum around 93 % with a Polybed H2 PSA system having twelve columns and the step configuration contains simultaneous adsorption at three columns and four-stage pressure equalisation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

Ac :

Internal column surface area, m2

Ap :

Pellet surface area, m2

b ji :

Adsorption equilibrium constant of site j for comp. i, bar−1

b ji,0 :

Pre-exponential adsorption equilibrium constant coefficient of site j for comp. i, bar−1

ci :

Gas concentration of component i, mol m−3

c mi :

Gas concentration of component i in the macropore, mol m−3

cT :

Total gas concentration, mol m−3

\(c_{P,s}\) :

Specific heat capacity at constant pressure of the adsorbent, J kg−1 K−1

DL :

Axial mass dispersion coefficient, m2s−1

Dc :

Column diameter, m

Dm :

Molecular diffusivity, m2 s−1

Dp,i :

Macropore diffusivity of component i, m2 s−1

dp :

Pellet averaged diameter, m

hw :

Heat transfer coefficient at the column wall, W m−2 K−1

Hf :

Enthalpy in the fluid phase per unit volume, J m−3

\(\widetilde{H}_{i}\) :

Partial molar enthalpy in the fluid phase of component i, J mol−1

\(\varDelta \widetilde{H}_{i}^{j}\) :

Heat of adsorption of site j for component i, J mol−1

Ji :

Diffusive flux of component i, mol m−2 s−1

JT :

Thermal diffusive flux, W m−2

kg :

Gas conductivity, W m−1 K−1

k pi ·Ap/Vp :

LDF mass transfer coefficient of component i in the pellet, s−1

k cri ·3/rc :

LDF mass transfer coefficient of component i in the crystal, s−1

Lc :

Column length, m

Mads :

Adsorbent mass, kg

P:

Pressure, bar

Pr:

Prandtl number, [-]

\(\bar{q}_{i}\) :

Average adsorbed concentration of component i in the crystal, mol kg−1

q *i :

Adsorbed concentration of component i at equilibrium, mol kg−1

q ji,s :

Saturation capacity of site j for comp. i, mol kg−1

\(\bar{Q}_{i}\) :

Average adsorbed concentration of component i in the pellet, mol m−3

Qfeed :

Feed flow rate, mol s−1

R:

Ideal gas constant J mol−1 K−1

Re:

Reynolds number, [-]

rc :

Crystal radius, m

rp :

Pellet radius, m

Sc:

Schimdt number, [-]

t:

Time, s

tcycle :

Cycle time, s

T:

Temperature, K

Tf :

Fluid temperature, K

Tw :

Column wall temperature, K

u:

Velocity, m s−1

Uf :

Internal energy in the fluid phase per unit volume, J m−3

UP :

Internal energy in the pellet per unit volume, J m−3

UP,f :

Internal energy in the macropore per unit volume, J m−3

UP,s :

Internal energy in the solid phase per unit volume, J m−3

v:

Interstitial flow velocity, m s−1

Vc :

Column volume, m3

Vp :

Pellet volume, m3

xi, yi :

Molar fraction of component i, [-]

z:

Spatial dimension, m

ε:

External bed void fraction, [-]

εp :

Pellet void fraction, [-]

λL :

Axial thermal dispersion coefficient, W m−1 K−1

μ:

Viscosity, bar s

ρf :

Fluid density, kg m−3

ρp :

Pellet density, kg m−3

References

  • Ahn, H., Yang, J., Lee, C.-H.: Effects of feed composition of coke oven gas on a layered bed H2 PSA process. Adsorption 7, 339–356 (2001)

    Article  CAS  Google Scholar 

  • Ahn, S., You, Y.-W., Lee, D.-G., Kim, K.-H., Oh, M., Lee, C.-H.: Layered two- and four-bed PSA processes for H2 recovery from coal gas. Chem. Eng. Sci. 68, 413–423 (2012)

    Article  CAS  Google Scholar 

  • Cassidy, R.T.: Polybed pressure-swing adsorption hydrogen processing. ACS Symposium Series, vol. 135, Chapter 13, pp. 247–259 (1980)

  • Committee on climate change, reducing emissions from buildings and industry through the 2020s, Chapter 5 (2011)

  • DECC, Final emissions estimates by fuel type and end-user sector (2009)

  • DOE NETL, Cost and performance baseline for fossil energy plants (2007)

  • Ergun, S.: Fluid flow through packed columns. Chem. Eng. Prog. 48, 89–94 (1952)

    CAS  Google Scholar 

  • Friedrich, D., Ferrari, M.-C., Brandani, S.: Efficient simulation and acceleration of convergence for a dual piston pressure swing adsorption system. Ind. Eng. Chem. Res. 52, 8897–8905 (2013)

    Article  CAS  Google Scholar 

  • Fuderer, A., Rudelstorfer, E.: US Patent 3986849 to Union Carbide Corporation (1976)

  • Kapetaki, Z., Ahn, H., Brandani, S.: Detailed process simulation of pre-combustion IGCC plants using coal-slurry and dry coal gasifiers. Energy Procedia 37, 2196–2203 (2013)

    Article  CAS  Google Scholar 

  • Lopes, F.V.S., Grande, C.A., Ribeiro, A.M., Loureiro, J.M., Evaggelos, O., Nikolakis, V., Rodrigues, A.E.: Adsorption of H2, CO2, CH4, CO, N2 and H2O in activated carbon and zeolite for hydrogen production. Sep. Sci. Technol. 44, 1045–1073 (2009)

    Article  CAS  Google Scholar 

  • Lopes, F.V.S., Grande, C.A., Rodrigues, A.E.: Activated carbon for hydrogen purification by pressure swing adsorption: multicomponent breackthrough curves and PSA performance. Chem. Eng. Sci. 66, 303–317 (2011)

    Article  CAS  Google Scholar 

  • Malek, A., Farooq, S.: Study of a six-bed pressure swing adsorption process. AIChE J. 43, 2509–2523 (1997)

    Article  CAS  Google Scholar 

  • OriginLab: Data analysis and graphing software. Origin 8, 5 (2010)

    Google Scholar 

  • Park, J.-H., Kim, J.-D., Yang, R.T.: Adsorber dynamics and optimal design of layered beds for multicomponent gas adsorption. Chem. Eng. Sci. 53, 3951–3963 (1998)

    Article  CAS  Google Scholar 

  • Ribeiro, A.M., Grande, C.A., Lopes, F.V.S., Loureiro, J.M., Rodrigues, A.E.: A parametric study of layered bed PSA for hydrogen purification. Chem. Eng. Sci. 63, 5258–5273 (2008)

    Article  CAS  Google Scholar 

  • Ribeiro, A.M., Grande, C.A., Lopes, F.V.S., Loureiro, J.M., Rodrigues, A.E.: Four beds pressure swing adsorption for hydrogen purification: case of humid feed and activated carbon beds. AIChE J. 55, 2292–2302 (2009)

    Article  CAS  Google Scholar 

  • SEPA’s National Air Quality Report (2008)

  • Wakao, N., Funazkri, T.: Effect of fluid dispersion coefficients on particle-to-fluid mass transfer coefficients in packed beds. Chem. Eng. Sci. 33, 1375–1384 (1978)

    Article  CAS  Google Scholar 

  • Xu, J., Weist, E.L.: US Patent 6454838 B1 to Air Products and Chemicals Inc (2002)

  • Xu, J., Rarig, D.L., Cook, T.A., Hsu, K.K., Schoonover, M., Agrawal, R.: US Patent 6565628 B2 to Air Products and Chemicals Inc (2003)

  • Yang, R.T.: Gas separation by adsorption processes. Butterworth Publishers (1987)

  • Yang, J., Lee, C.-H.: Adsorption dynamics of a layered bed PSA for H2 recovery from coke oven gas. AIChE J. 44, 1325–1334 (1998)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to express our gratitude for the financial support from KETEP (Grant No.: 2011-8510020030) and EPSRC (Grant Nos.: EP/F034520/1, EP/G062129/1, and EP/J018198/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyungwoong Ahn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luberti, M., Friedrich, D., Brandani, S. et al. Design of a H2 PSA for cogeneration of ultrapure hydrogen and power at an advanced integrated gasification combined cycle with pre-combustion capture. Adsorption 20, 511–524 (2014). https://doi.org/10.1007/s10450-013-9598-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-013-9598-0

Keywords

Navigation