Skip to main content
Log in

Adsorption of carbon dioxide on graphene oxide supported layered double oxides

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

Adsorption of CO2 on layered double oxides supported on graphene oxide has been studied under dry and wet conditions. In the first exposure to the adsorptive gas, the isotherms obtained for supported and unsupported materials are shown to fit to the Freundlich model indicating the existence of heterogeneous adsorption sites. After multiple temperature-swing cycles, the adsorption capacity decreased and the data is better described by the Langmuir model. The presence of graphene oxide is shown to reduce the loss of adsorption capacity, and helps to maintain the heterogeneity of the basic sites on the adsorbents. The use of wet gas mixtures was found to have a positive effect on the CO2 adsorption capacity of the graphene oxide hybrids. The presence of residual sodium on the materials resulted in a Freundlich isotherm with increased adsorption capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

b:

Gas–solid interaction parameter in Langmuir isotherm (bar−1)

k:

Pre-factor in Freundlich isotherm (mol \( {\text{kg}}_{\text{ads}}^{ - 1} \)  bar(−1/n))

m:

Monolayer capacity in Langmuir isotherm (mol \( {\text{kg}}_{\text{ads}}^{ - 1} \))

\( m_{a} \) :

Mass of adsorbent within the column (kg)

n :

Fitting parameter in Freundlich isotherm

\( P_{b} \) :

Pressure inside the bed (bar)

\( P_{s} \) :

Standard pressure (bar)

\( P_{{{\text{CO}}_{2f} }} \) :

Partial pressure of CO2 in the feed (bar)

q:

Adsorption capacity (mol CO \( {\text{kg}}_{\text{ads}}^{ - 1} \))

\( Q_{Ar - bk} \) :

Volumetric flow rate of argon in the blank test (L min−1)

\( Q_{f} \) :

Volumetric feed flow rate at standard conditions (L min−1)

\( t^{o} \) :

Time to approach the effluent composition \( y_{{{\text{CO}}_{2f} }} \) (min)

\( T_{b} \) :

Temperature inside the bed (K)

\( T_{s} \) :

Standard temperature (K)

\( t_{st} \) :

Stoichiometric time of the column (min)

\( V_{b} \) :

Volume of the bed (L)

\( y_{\text{Ar}} \) :

Mol fraction of Ar at the exit of the column

\( y_{{{\text{Ar}}f}} \) :

Mol fraction of Ar in the feed

\( y_{{{\text{CO}}_{2} }} \) :

Mol fraction of CO2 at the exit of the column

\( y_{{CO_{2f} }} \) :

Mol fraction of CO2 in the feed

\( \varepsilon_{T} \) :

Total porosity

References

  • Aschenbrenner, O., McGuire, P., Alsamaq, S., Wang, J., Supasitmongkol, S., Al-Duri, B., Styring, P., Wood, J.: Adsorption of carbon dioxide on hydrotalcite-like compounds of different compositions. Chem. Eng. Res. Des. 89, 1711–1721 (2011)

    Article  CAS  Google Scholar 

  • Choi, S., Drese, J.H., Jones, C.W.: Adsorbent materials for carbon dioxide capture from large anthropogenic point sources. ChemSusChem. 2, 796–854 (2009)

    Article  CAS  Google Scholar 

  • Corma, A., Palomares, A.E., Rey, F.: Optimization of SO X additives of FCC catalysts based on MgO–A12O3 mixed oxides produced from hydrotalcites. Appl. Catal. B 4, 29–43 (1994)

    Article  CAS  Google Scholar 

  • Ding, Y., Alpay, E.: Equilibria and kinetics of CO2 adsorption on hydrotalcite adsorbent. Chem. Eng. Sci. 55, 3461–3474 (2000)

    Article  CAS  Google Scholar 

  • Garcia-Gallastegui, A., Iruretagoyena, D., Mokhtar, M., Asiri, A.M., Basahel, S.N., Al-Thabaiti, S.A., Alyoubi, A.O., Chadwick, D., Shaffer, M.S.P.: Layered double hydroxides supported on multi-walled carbon nanotubes: preparation and CO2 adsorption characteristics. J. Mater. Chem. 22, 13932–13940 (2012a)

    Article  CAS  Google Scholar 

  • Garcia-Gallastegui, A., Iruretagoyena, D., Gouvea, V., Mokhtar, M., Asiri, A.M., Basahel, S.N., Al-Thabaiti, S.A., Alyoubi, A.O., Chadwick, D., Shaffer, M.S.P.: Graphene oxide as support for layered double hydroxides: enhancing the CO2 adsorption capacity. Chem. Mater. 24, 4531–4539 (2012b)

    Article  CAS  Google Scholar 

  • Halabi, M.H., de Croon, M.H.J.M., van der Schaaf, J., Cobden, P.D., Schouten, J.C.: High capacity potassium-promoted hydrotalcite for CO2 capture in H2 production. Int. J. Hydrogen Energy 37, 4516–4525 (2012)

    Article  CAS  Google Scholar 

  • Hufton, J.R., Mayorga, S., Sircar, S.: Sorption-enhanced reaction process for hydrogen production. AIChE J. 45, 248–256 (1999)

    Article  CAS  Google Scholar 

  • Hutson, N.D., Attwood, B.C.: High temperature adsorption of CO2 on various hydrotalcite-like compounds. Adsorption 14, 781–789 (2008)

    Article  CAS  Google Scholar 

  • Jang, H.M., Lee, K.B., Caram, H.S., Sircar, S.: High-purity hydrogen production through sorption enhanced water gas shift reaction using K2CO3-promoted hydrotalcite. Chem. Eng. Sci. 73, 431–438 (2012)

    Article  CAS  Google Scholar 

  • Kang, H.T., Lv, K., Yuan, S.L.: Synthesis, characterization, and SO2 removal capacity of MnMgAlFe mixed oxides derived from hydrotalcite-like compounds. Appl. Clay Sci. 72, 184–190 (2013)

    Article  CAS  Google Scholar 

  • Kinniburgh, D.G.: General purpose adsorption isotherms. Environ. Sci. Technol. 20, 895–904 (1986)

    Article  CAS  Google Scholar 

  • Lee, K.B., Verdooren, A., Caram, H.S., Sircar, S.: Chemisorption of carbon dioxide on potassium-carbonate-promoted hydrotalcite. J. Colloid Interface Sci. 308, 30–39 (2007)

    Article  CAS  Google Scholar 

  • Leon, M., Diaz, E., Bennici, S., Vega, A., Ordonez, S., Auroux, A.: Adsorption of CO2 on hydrotalcite-derived mixed oxides: sorption mechanisms and consequences for adsorption irreversibility. Ind. Eng. Chem. Res. 49, 3663–3671 (2010)

    Article  CAS  Google Scholar 

  • Meis, N.N.A.H., Bitter, J.H., de Jong, K.P.: Support and size effects of activated hydrotalcites for precombustion CO2 capture. Ind. Eng. Chem. Res. 49, 1229–1235 (2010a)

    Article  CAS  Google Scholar 

  • Meis, N.N.A.H., Bitter, J.H., de Jong, K.P.: On the influence and role of alkali metals on supported and unsupported activated hydrotalcites for CO2 sorption. Ind. Eng. Chem. Res. 49, 8086–8093 (2010b)

    Article  CAS  Google Scholar 

  • Millange, F., Walton, R.I., O’Hare, D.: Time-resolved in situ X-ray diffraction study of the liquid-phase reconstruction of Mg–Al-carbonate hydrotalcite-like compounds. J. Mater. Chem. 10, 1713–1720 (2000)

    Article  CAS  Google Scholar 

  • Oliveira, E.L.G., Grande, C.A., Rodrigues, A.E.: CO2 sorption on hydrotalcite and alkali-modified (K and Cs) hydrotalcites at high temperatures. Sep. Purif. Technol. 62, 137–147 (2008)

    Article  CAS  Google Scholar 

  • Othman, M.R., Rasid, N.M., Fernando, W.J.N.: Mg–Al hydrotalcite coating on zeolites for improved carbon dioxide adsorption. Chem. Eng. Sci. 61, 1555–1560 (2006)

    Article  CAS  Google Scholar 

  • Ram Reddy, M.K., Xu, Z.P., Lu, G.Q., Diniz da Costa, J.C.: Influence of water on high-temperature CO2 capture using layered double hydroxide derivatives. Ind. Eng. Chem. Res. 47, 2630–2635 (2008)

    Article  Google Scholar 

  • Reijers, H.T.J., Boon, J., Elzinga, G.D., Cobden, P.D., Haije, W.G., van den Brink, R.W.: Modeling study of the sorption-enhanced reaction process for CO2 capture. I. Model development and validation. Ind. Eng. Chem. Res. 48, 6966–6974 (2009)

    Article  CAS  Google Scholar 

  • Rourke, J.P., Pandey, P.A., Moore, J.J., Bates, M., Kinloch, I.A., Young, R.J., Wilson, N.R.: The real graphene oxide revealed: stripping the oxidative debris from the graphene-like sheets. Angew. Chem. Int. Ed. 50, 3173–3177 (2011)

    Article  CAS  Google Scholar 

  • Soares, J.L., Casarin, G.L., Jose, H.J., Moreira, R.D.F.P.M.: Experimental and theoretical analysis for the CO2 adsorption on hydrotalcite. Adsorption 11, 237–241 (2005)

    Article  Google Scholar 

  • Tong, M., Chen, H., Yang, Z., Wen, R.: The effect of Zn–Al-hydrotalcites composited with calcium stearate and β-diketone on the thermal stability of PVC. Int. J. Mol. Sci. 12, 1756–1766 (2011)

    Article  CAS  Google Scholar 

  • van Dijk, H.A.J., Walspurger, S., Cobden, P.D., van den Brink, R.W., de Vos, F.G.: Testing of hydrotalcite-based sorbents for CO2 and H2S capture for use in sorption enhanced water gas shift. Int. J. Greenhouse Gas Control 5, 505–511 (2011)

    Article  Google Scholar 

  • Walspurger, S., Boels, L., Cobden, P.D., Elzinga, G.D., Haije, W.G., van den Brink, R.W.: The crucial role of the K+ -aluminium oxide interaction in K+ -promoted alumina- and hydrotalcite-based materials for CO2 sorption at high temperatures. ChemSusChem. 1, 643–650 (2008)

    Article  CAS  Google Scholar 

  • Wang, Q., Luo, J., Zhong, Z., Borgna, A.: CO2 capture by solid adsorbents and their applications: current status and new trends. Energy Environ. Sci. 4, 42–55 (2011)

    Article  CAS  Google Scholar 

  • Yong, Z., Mata, V., Rodrigues, A.E.: Adsorption of carbon dioxide onto hydrotalcite-like compounds(HTlcs) at high temperatures. Ind. Eng. Chem. Res. 40, 204–209 (2001)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Ainara Garcia-Gallastegui and Raul Montesano for discussions and assistance. D.I. thanks CONACyT and SEP for the scholarships awarded.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Chadwick.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iruretagoyena, D., Shaffer, M.S.P. & Chadwick, D. Adsorption of carbon dioxide on graphene oxide supported layered double oxides. Adsorption 20, 321–330 (2014). https://doi.org/10.1007/s10450-013-9595-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-013-9595-3

Keywords

Navigation