Skip to main content
Log in

Branched versus linear alkane adsorption in carbonaceous slit pores

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

The presence of carbonaceous deposits on the internal surfaces of a spark ignition engine has been linked in the literature to impaired vehicle performance, as manifested by increased knocking, higher fuel consumption, higher emissions and other adverse effects. One of the proposed mechanisms, in which the deposits affect the processes in the engine, is the adsorption and desorption of fuel components in the pores within the deposit. In this article we investigate this mechanism in more detail by considering single component adsorption of normal and branched alkanes in selected model slit pores representing the structure of the deposits. We further extend these studies to the binary mixture of normal heptane and isooctane, corresponding to a primary reference fuel blend. In particular, we show that in larger pores adsorption selectivity towards isooctane is about 1.2 on average throughout the pressure range. However, in the smaller 10 Å pore selectivity towards isooctane can be in excess of three as a result of packing effects. These results are then placed in the context of engine performance issues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Cracknell, R.F., Nicholson, D.: Grand canonical Monte Carlo study of Lennard-Jones mixtures in slit pores. Part 3.-Mixtures of two molecular fluids: ethane and propane. J. Chem. Soc. Faraday Trans. 90(11), 1487–1493 (1994)

    Article  CAS  Google Scholar 

  • Cracknell, R.F., Nicholson, D., Quirke, N.: A Grand Canonical Monte-Carlo Study of Lennard-Jones Mixtures in Slit Pores; 2: mixtures of two centre ethane with methane. Mol. Simul. 13(3), 161–175 (1994)

    Article  CAS  Google Scholar 

  • Frenkel, D., Smit, B.: Understanding molecular simulations from algorithms to applications. Academic Press, London (2002)

    Google Scholar 

  • Davies, G.M., Seaton, N.A.: Development and validation of pore structure models for adsorption in activated carbons. Langmuir 15(19), 6263–6276 (1999)

    Article  CAS  Google Scholar 

  • Davies, G.M., Seaton, N.A., Vassiliadis, V.S.: Calculation of pore size distributions of activated carbons from adsorption isotherms. Langmuir 15(23), 8235–8245 (1999)

    Article  CAS  Google Scholar 

  • Do, D.D., Do, H.D.: Pore characterization of carbonaceous materials by DFT and GCMC simulations: a review. Adsorpt. Sci. Technol. 21(5), 389–423 (2003)

    Article  CAS  Google Scholar 

  • Gelb, L.D., Gubbins, K.E., Radhakrishnan, R., Sliwinska-Bartkowiak, M.: Phase separation in confined systems. Rep. Prog. Phys. 62(12), 1573–1659 (1999)

    Article  CAS  Google Scholar 

  • Gupta, A., Chempath, S., Sanborn, M.J., Clark, L.A., Snurr, R.Q.: Object-oriented programming paradigms for molecular modeling. Mol. Simul. 29(1), 29–46 (2003)

    Article  CAS  Google Scholar 

  • Heffelfinger, G.S., Tan, Z., Gubbins, K.E., Marconi, U.M.B., Swol, F.V.: Lennard-Jones Mixtures in a Cylindrical Pore. A comparison of simulation and density functional theory. Mol. Simul. 2(4–6), 393–411 (1989)

    Article  Google Scholar 

  • Heywood, J.B.: Internal combustion engine fundamentals. McGraw-Hill, New York (1988)

    Google Scholar 

  • Houser, K.R., Crosby, T.A.: The Impact of Intake Valve Deposits on Exhaust Emissions. SAE Technical Paper No. 922259 (1992)

  • Kalghatgi, G.T.: Deposits in gasoline engines: a literature review. SAE (N. 902105) (1990)

  • Kalghatgi, G.T.: Combustion chamber deposits in spark-ignition engines: a literature review. SAE (952443) (1995)

  • Kalghatgi, G.T.: Combustion chamber deposits and knock in a sprak ignition engine-some additive and fuel effects. SAE (N. 962009) (1996)

  • Li, Y., Yu, Y., Zheng, Y., Li, J.: Vapor-liquid equilibrium properties for confined binary mixtures involving CO2, CH4, and N2 from Gibbs ensemble Monte Carlo simulations. Sci. China Chem. 55(9), 1825–1831 (2012)

    Article  CAS  Google Scholar 

  • Macedonia, M.D., Maginn, E.J.: Pure and binary component sorption equilibria of light hydrocarbons in the zeolite silicalite from grand canonical Monte Carlo simulations. Fluid Phase Equilib. 160, 19–27 (1999)

    Article  Google Scholar 

  • Martin, M.G., Siepmann, J.I.: Transferable potentials for phase equilibria. 1. United-atom description of n-alkanes. J. Phys. Chem. B 102(14), 2569–2577 (1998)

    Article  CAS  Google Scholar 

  • Martin, M.G., Siepmann, J.I.: Novel configurational-bias Monte Carlo method for branched molecules. Transferable potentials for phase equilibria. 2. United-atom description of branched alkanes. J. Phys. Chem. B 103(21), 4508–4517 (1999)

    Article  CAS  Google Scholar 

  • Myers, A.L., Prausnitz, J.M.: Thermodynamics of mixed-gas adsorption. AIChE J. 11(1), 121–127 (1965)

    Article  CAS  Google Scholar 

  • Pinto da Costa, J.M.C., Cracknell, R.F., Sarkisov, L., Seaton, N.A.: Structural characterization of carbonaceous combustion-chamber deposits. Carbon 47(14), 3322–3331 (2009)

    Article  CAS  Google Scholar 

  • Pinto da Costa, J.M.C., Cracknell, R.F., Seaton, N.A., Sarkisov, L.: Towards predictive molecular simulations of normal and branched alkane adsorption in carbonaceous engine deposits. Carbon 49(2), 445–456 (2011)

    Article  CAS  Google Scholar 

  • Ravikovitch, P.I., Vishnyakov, A., Russo, R., Neimark, A.V.: Unified approach to pore size characterization of microporous carbonaceous materials from N2, Ar, and CO2 adsorption isotherms. Langmuir 16(5), 2311–2320 (2000)

    Article  CAS  Google Scholar 

  • Sarkisov, L., Monson, P.A.: Hysteresis in Monte Carlo and molecular dynamics simulations of adsorption in porous materials. Langmuir 16(25), 9857–9860 (2000)

    Article  CAS  Google Scholar 

  • Sarkisov, L., Monson, P.A.: Modeling of adsorption and desorption in pores of simple geometry using molecular dynamics. Langmuir 17(24), 7600–7604 (2001)

    Article  CAS  Google Scholar 

  • Seaton, N.A., Walton, J.P.R.B., Quirke, N.: A new analysis method for the determination of the pore size distribution of porous carbons from nitrogen adsorption measurements. Carbon 27(6), 853–861 (1989)

    Article  CAS  Google Scholar 

  • Severson, B.L., Snurr, R.Q.: Monte Carlo simulation of n-alkane adsorption isotherms in carbon slit pores. J. Chem. Phys. 126(13), 134708 (2007)

    Article  Google Scholar 

  • Shibata, G., Nagaishi, H., Oda, K.: Effect of intake valve deposits and Gasoline composition on SI engine performance. SAE Technical Paper No. 922263 (1992)

  • Shu, G., Dong, L., Liang, X.: A review of experimental studies on deposits in the combustion chambers of internal combustion engines. Int. J. Engine Res. 13(4), 357–369 (2012)

    Google Scholar 

  • Singh, S.K., Sinha, A., Deo, G., Singh, J.K.: Vapor-liquid phase coexistence, critical properties, and surface tension of confined alkanes. J. Phys. Chem. C 113(17), 7170–7180 (2009)

    Article  CAS  Google Scholar 

  • Snurr, R.Q., Bell, A.T., Theodorou, D.N.: Prediction of adsorption of aromatic hydrocarbons in silicalite from grand canonical Monte Carlo simulations with biased insertions. J. Phys. Chem 97(51), 13742–13752 (1993)

    Article  CAS  Google Scholar 

  • Talu, O., Myers, A.L.: Molecular simulation of adsorption: gibbs dividing surface and comparison with experiment. AIChE J. 47(5), 1160–1168 (2001)

    Article  CAS  Google Scholar 

  • Tan, Z., Gubbins, K.E.: Selective adsorption of mixtures in slit pores - a model of methane ethane mixtures in carbon. J. Phys. Chem. 96(2), 845–854 (1992)

    Article  CAS  Google Scholar 

  • Vega, L.F.: Theoretical and computational chemistry. In: Balbuena, P.B., Seminario, J.M. (eds.) Nanomaterials: design and simulation, pp. 101–126. Elsevier, Amsterdam (2007)

    Google Scholar 

  • Zerda, T.W., Yuan, X., Moore, S.M., Leon, C.: Surface area, pore size distribution and microstructure of combustion engine deposits. Carbon 37(12), 1999–2009 (1999)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has made use of the resources provided by the Edinburgh Compute and Data Facility (ECDF) (http://www.ecdf.ed.ac.uk/). The ECDF is partially supported by the DIKT initiative (http://www.edikt.org.uk). The authors would like to thank Shell Global Solutions for providing the CCD and IVD samples and for funding this project. LS would also like to thank Prof. Berend Smit for an alternative simulation package used to validate simulations results for branched alkanes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Sarkisov.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 2222 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harrison, A., Cracknell, R.F., Krueger-Venus, J. et al. Branched versus linear alkane adsorption in carbonaceous slit pores. Adsorption 20, 427–437 (2014). https://doi.org/10.1007/s10450-013-9589-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-013-9589-1

Keywords

Navigation