Skip to main content
Log in

Fluids in nanospaces: molecular simulation studies to find out key mechanisms for engineering

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

We have analyzed various phenomena that occur in nanopores, focusing on elucidating their key mechanisms, to advance the effective engineering use of nanoporous materials. As ideal experimental systems, molecular simulations can effectively provide information at the molecular level that leads to mechanistic insight. In this short review, several of our recent results are presented. The first topic is the critical point depression of Lennard-Jones fluid in silica slit pores due to finite size effects, studied by our original Monte Carlo (MC) technique. We demonstrate that the first layers of adsorbed molecules in contact with the pore walls act as a “fluid wall” and impose extra finite size effects on the fluid confined in the central portion of the pore. We next present a new kernel for pore size distribution (PSD) analysis, based entirely on molecular simulation, which consists of local isotherms for nitrogen adsorption in carbon slit pores at 77 K. The kernel is obtained by combining grand canonical Monte Carlo (GCMC) method and open pore cell MC method that was developed in the previous study. We show that overall trends of the PSDs of activated carbons calculated with our new kernel and with conventional kernel from non-local density functional theory are nearly the same; however, apparent difference can be seen between them. As the third topic, we apply a free energy analysis method with the aid of GCMC simulations to investigate the gating behavior observed in a porous coordination polymer, and propose a mechanism for the adsorption-induced structural transition based on both the theory of equilibrium and kinetics. Finally, we construct an atomistic silica pore model that mimics MCM-41, which has atomic-level surface roughness, and perform molecular simulations to understand the mechanism of capillary condensation with hysteresis. We calculate the work required for the gas–liquid transition from the simulation data, and show that the adsorption branch with hysteresis for MCM-41 arise from spontaneous capillary condensation from a metastable state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Coasne, B., Di Renzo, F., Galarneau, A., Pellenq, R.J.M.: Adsorption of simple fluid on silica surface and nanopore: effect of surface chemistry and pore shape. Langmuir 24, 7285–7293 (2008a)

    Article  CAS  Google Scholar 

  • Coasne, B., Galarneau, A., Di Renzo, F., Pellenq, R.J.M.: Effect of morphological defects on gas adsorption in nanoporous silicas. J. Phys. Chem. C 111, 15759–15770 (2007)

    Article  CAS  Google Scholar 

  • Coasne, B., Galarneau, A., Di Renzo, F., Pellenq, R.J.M.: Gas adsorption in mesoporous micelle-templated silicas: MCM-41, MCM-48, and SBA-15. Langmuir 22, 11097–11105 (2006a)

    Article  CAS  Google Scholar 

  • Coasne, B., Galarneau, A., Di Renzo, F., Pellenq, R.J.M.: Molecular simulation of adsorption and intrusion in nanopores. Adsorption 14, 215–221 (2008b)

    Article  CAS  Google Scholar 

  • Coasne, B., Galarneau, A., Di Renzo, F., Pellenq, R.J.M.: Molecular simulation of nitrogen adsorption in nanoporous silica. Langmuir 26, 10872–10881 (2010)

    Article  CAS  Google Scholar 

  • Coasne, B., Galarneau, A., Pellenq, R.J.M., Di Renzo, F.: Adsorption, intrusion and freezing in porous silica: the view from the nanoscale. Chem. Soc. Rev. 42, 4141–4171 (2013)

    Article  CAS  Google Scholar 

  • Coasne, B., Hung, F.R., Pellenq, R.J.M., Siperstein, F.R., Gubbins, K.E.: Adsorption of sample gases in MCM-41 materials: The role of surface roughness. Langmuir 22, 194–202 (2006b)

    Article  CAS  Google Scholar 

  • Coasne, B., Pellenq, R.J.M.: A grand canonical Monte Carlo study of capillary condensation in mesoporous media: Effect of the pore morphology and topology. J. Chem. Phys. 121, 3767–3774 (2004a)

    Article  CAS  Google Scholar 

  • Coasne, B., Pellenq, R.J.M.: Grand canonical Monte Carlo simulation of argon adsorption at the surface of silica nanopores: effect of pore size, pore morphology, and surface roughness. J. Chem. Phys. 120, 2913–2922 (2004b)

    Article  CAS  Google Scholar 

  • Coasne, B., Ugliengo, P.: Atomistic model of micelle-templated mesoporous silicas: structural, morphological, and adsorption properties. Langmuir 28, 11131–11141 (2012)

    Article  CAS  Google Scholar 

  • Coudert, F.-X., Jeffroy, M., Fuchs, A.H., Boutin, A., Mellot-Draznieks, C.: Thermodynamics of guest-induced structural transitions in hybrid organic-inorganic frameworks. J. Am. Chem. Soc. 130, 14294–14302 (2008)

    Article  CAS  Google Scholar 

  • Do, D.D., Do, H.D.: Pore characterization of carbonaceous materials by DFT and GCMC simulations: a review. Adsorpt. Sci. Tech. 21, 389–423 (2003)

    Article  CAS  Google Scholar 

  • Düren, T., Sarkisov, L., Yaghi, O.M., Snurr, R.Q.: Design of new materials for methane storage. Langmuir 20, 2683–2689 (2004)

    Article  Google Scholar 

  • Düren, T., Snurr, R.Q.: Assessment of isoreticular metal–organic frameworks for adsorption separations: a molecular simulation Study of methane/n-butane mixtures. J. Phys. Chem. B 108, 15703–15708 (2004)

    Article  Google Scholar 

  • Gelb, L.D., Gubbins, K.E., Radhakrishnan, R., Sliwinska-Bartkowiak, M.: Phase separation in confined systems. Rep. Prog. Phys. 62, 1573–1659 (1999)

    Article  CAS  Google Scholar 

  • Gubbins, K.E., Liu, Y.-C., Moore, J.D., Palmer, J.C.: Molecular modeling of matter: impact and prospects in engineering. Ind. Eng. Chem. Res. 49, 3026–3046 (2010)

    Article  CAS  Google Scholar 

  • Gubbins, K.E., Liu, Y.-C., Moore, J.D., Palmer, J.C.: The role of molecular modeling in confined systems: impact and prospects. Phys. Chem. Chem. Phys. 13, 58–85 (2011)

    Article  CAS  Google Scholar 

  • Horcajada, P., Serre, C., Vallet-Regi, M., Sebban, M., Taulelle, F., Ferey, G.: Metal–organic frameworks as efficient materials for drug delivery. Angew. Chem. Int. Ed. 45, 5974–5978 (2006)

    Article  CAS  Google Scholar 

  • Horike, S., Shimomura, S., Kitagawa, S.: Soft porous crystals. Nat. Chem. 1, 695–704 (2009)

    Article  CAS  Google Scholar 

  • Jagiello, J., Olivier, J.P.: 2D-NLDFT adsorption models for carbon slit-shaped pores with surface energetical heterogeneity and geometrical corrugation. Carbon 55, 70–80 (2013)

    Article  CAS  Google Scholar 

  • Jana, S., Singh, J.K., Kwak, S.K.: Vapor-liquid critical and interfacial properties of square-well fluids in slit pores. J. Chem. Phys. 130, 214707 (2009)

    Article  Google Scholar 

  • Kanda, H., Miyahara, M., Higashitani, K.: Triple point of Lennard-Jones fluid in slit nanopore: solidification of critical condensate. J. Chem. Phys. 120, 6173–6179 (2004)

    Article  CAS  Google Scholar 

  • Kanda, H., Miyahara, M.: Sublimation phenomena of Lennard-Jones fluids in slit nanopores. J. Chem. Phys. 126, 054703 (2007)

    Article  Google Scholar 

  • Kanoh, H., Kondo, A., Noguchi, H., Kajiro, H., Tohdoh, A., Hattori, Y., Xu, W.-C., Inoue, M., Sugiura, T., Morita, K., Tanaka, H., Ohba, T., Kaneko, K.: Elastic layer-structured metal organic frameworks (ELMs). J. Colloid Interface Sci. 334, 1–7 (2009)

    Article  CAS  Google Scholar 

  • Kitagawa, S., Kitaura, R., Noro, S.: Functional porous coordination polymers. Angew. Chem. Int. Ed. 43, 2334–2375 (2004)

    Article  CAS  Google Scholar 

  • Kitaura, R., Seki, K., Akiyama, G., Kitagawa, S.: Porous coordination-polymer crystals with gated channels specific for supercritical gases. Angew. Chem. Int. Ed. 42, 428–431 (2003)

    Article  CAS  Google Scholar 

  • Kondo, A., Noguchi, H., Ohnishi, S., Kajiro, H., Tohdoh, A., Hattori, Y., Xu, W.-C., Tanaka, H., Kanoh, H., Kaneko, K.: Novel expansion/shrinkage modulation of 2D layered MOF triggered by clathrate formation with CO2 molecules. Nano Lett. 6, 2581–2584 (2006)

    Article  CAS  Google Scholar 

  • Li, D., Kaneko, K.: Hydrogen bond-regulated microporous nature of copper complex-assembled microcrystals. Chem. Phys. Lett. 335, 50–56 (2001)

    Article  CAS  Google Scholar 

  • Liu, Y., Panagiotopoulos, A.Z., Debenedetti, P.G.: Finite-size scaling study of the vapor-liquid critical properties of confined fluids: crossover from three dimensions to two dimensions. J. Chem. Phys. 132, 144107 (2010)

    Article  Google Scholar 

  • Miyahara, M., Gubbins, K.E.: Freezing/melting phenomena for Lennard-Jones methane in slit pores: a Monte Carlo study. J. Chem. Phys. 106, 2865–2880 (1997)

    Article  CAS  Google Scholar 

  • Miyahara, M., Kanda, H., Shibao, M., Higashitani, K.: Solid-liquid phase transition of Lennard-Jones fluid in slit pores under tensile condition. J. Chem. Phys. 112, 9909–9916 (2000a)

    Article  CAS  Google Scholar 

  • Miyahara, M., Kanda, H., Yoshioka, T., Okazaki, M.: Modeling capillary condensation in cylindrical nanopores: a molecular dynamics study. Langmuir 16, 4293–4299 (2000b)

    Article  CAS  Google Scholar 

  • Miyahara, M., Yoshioka, T., Okazaki, M.: Determination of adsorption equilibria in pores by molecular dynamics in a unit cell with imaginary gas phase. J. Chem. Phys. 106, 8124–8134 (1997)

    Article  CAS  Google Scholar 

  • Miyahara, M.T., Tanaka, H.: Determination of phase equilibria in confined systems by open pore cell Monte Carlo method. J. Chem. Phys. 138, 084709 (2013)

    Article  Google Scholar 

  • Mon, K.K., Binder, K.: Finite size effects for the simulation of phase coexistence in the Gibbs ensemble near the critical point. J. Chem. Phys. 96, 6989–6995 (1992)

    Article  CAS  Google Scholar 

  • Muroyama, N., Ohsuna, T., Ryoo, R., Kubota, Y., Terasaki, O.: An analytical approach to determine the pore shape and size of MCM-41 materials from X-ray diffraction data. J. Phys. Chem. B 110, 10630–10635 (2006)

    Article  CAS  Google Scholar 

  • Muroyama, N., Yoshimura, A., Kubota, Y., Miyasaka, K., Ohsuna, T., Ryoo, R., Ravikovitch, P.I., Neimark, A.V., Takata, M., Terasaki, O.: Argon adsorption on MCM-41 mesoporous crystal studied by in situ synchrotron powder X-ray diffraction. J. Phys. Chem. C 112, 10803–10813 (2008)

    Article  CAS  Google Scholar 

  • Nakagawa, K., Tanaka, D., Horike, S., Shimomura, S., Higuchi, M., Kitagawa, S.: Enhanced selectivity of CO2 from a ternary gas mixture in an interdigitated porous framework. Chem. Commun. 46, 4258–4260 (2010)

    Article  CAS  Google Scholar 

  • Neimark, A.V., Lin, Y., Ravikovitch, P.I., Thommes, M.: Quenched solid density functional theory and pore size analysis of micro-mesoporous carbons. Carbon 47, 1617–1628 (2009)

    Article  CAS  Google Scholar 

  • Neimark, A.V., Vishnyakov, A.: Gauge cell method for simulation studies of phase transitions in confined systems. Phys. Rev. E 62, 4611–4622 (2000)

    Article  CAS  Google Scholar 

  • Neimark, A.V., Vishnyakov, A.: Phase transitions and criticality in small systems: Vapor-liquid transition in nanoscale spherical cavities. J. Phys. Chem. B 110, 9403–9412 (2006)

    Article  CAS  Google Scholar 

  • Noguchi, H., Kondo, A., Hattori, Y., Kanoh, H., Kajiro, H., Kaneko, K.: Clathrate-formation mediated adsorption of methane on Cu-complex crystals. J. Phys. Chem. B 109, 13851–13853 (2005)

    Article  CAS  Google Scholar 

  • Numaguchi, R., Tanaka, H., Watanabe, S., Miyahara, M.T.: Simulation study for adsorption-induced structural transition in stacked-layer porous coordination polymers: Equilibrium and hysteretic adsorption behaviors. J. Chem. Phys. 138, 054708 (2013)

    Article  Google Scholar 

  • Olivier, J.P.: Modeling physical adsorption on porous and nonporous solids using density functional theory. J. Porous Mater. 2, 9–17 (1995)

    Article  CAS  Google Scholar 

  • Peterson, B.K., Gubbins, K.E.: Phase-transitions in a cylindrical pore—grand canonical Monte-Carlo, mean field-theory and the Kelvin equation. Mol. Phys. 62, 215–226 (1987)

    Article  CAS  Google Scholar 

  • Ravikovitch, P.I., Haller, G.L., Neimark, A.V.: Density functional theory model for calculating pore size distributions: pore structure of nanoporous catalysts. Adv. Colloid Interface Sci. 76, 203–226 (1998)

    Article  Google Scholar 

  • Ravikovitch, P.I., Odomhnaill, S.C., Neimark, A.V., Schuth, F., Unger, K.K.: Capillary hysteresis in nanopores: theoretical and experimental studies of nitrogen adsorption on MCM-41. Langmuir 11, 4765–4772 (1995)

    Article  CAS  Google Scholar 

  • Ravikovitch, P.I., Vishnyakov, A., Neimark, A.V.: Density functional theories and molecular simulations of adsorption and phase transitions in nanopores. Phys. Rev. E 64, 011602 (2001)

    Article  CAS  Google Scholar 

  • Ravikovitch, P.I., Vishnyakov, A., Russo, R., Neimark, A.V.: Unified approach to pore size characterization of microporous carbonaceous materials from N2, Ar, and CO2 Adsorption Isotherms. Langmuir 16, 2311–2320 (2000)

    Article  CAS  Google Scholar 

  • Rosseinsky, M.J.: Recent developments in metal–organic framework chemistry: design, discovery, permanent porosity and flexibility. Microporous Mesoporous Mater. 73, 15–30 (2004)

    Article  CAS  Google Scholar 

  • Rowsell, J.L.C., Yaghi, O.M.: Metal–organic frameworks: a new class of porous materials. Microporous and Mesoporous Mater. 73, 3–14 (2004)

    Article  CAS  Google Scholar 

  • Shi, W., Zhao, X., Johnson, J.K.: Phase transitions of adsorbed fluids computed from multiple-histogram reweighting. Mol. Phys. 100, 2139–2150 (2002)

    Article  CAS  Google Scholar 

  • Singh, S.K., Singh, J.K.: Effect of pore morphology on vapor-liquid phase transition and crossover behavior of critical properties from 3D to 2D. Fluid Phase Equilib. 300, 182–187 (2011)

    Article  CAS  Google Scholar 

  • Sonwane, C.G., Jones, C.W., Ludovice, P.J.: A model for the structure of MCM-41 incorporating surface roughness. J. Phys. Chem. B 109, 23395–23404 (2005)

    Article  CAS  Google Scholar 

  • Sugiyama, H., Watanabe, S., Tanaka, H., Miyahara, M.T.: Adsorption-induced structural transition of an interpenetrated porous coordination polymer: Detailed exploration of free energy profiles. Langmuir 28, 5093–5100 (2012)

    Article  CAS  Google Scholar 

  • Tanaka, H., Hiratsuka, T., Nishiyama, N., Mori, K., Miyahara, M.T.: Capillary condensation in mesoporous silica with surface roughness. Adsorption 19, 631–641 (2013)

    Article  CAS  Google Scholar 

  • Tarazona, P., Marconi, U.M.B., Evans, R.: Phase-equilibria of fluid interfaces and confined fluids—nonlocal versus local density functionals. Mol. Phys. 60, 573–595 (1987)

    Article  CAS  Google Scholar 

  • Tarazona, P.: Free-energy density functional for hard-spheres. Phys. Rev. A 31, 2672–2679 (1985)

    Article  CAS  Google Scholar 

  • Vishnyakov, A., Piotrovskaya, E.M., Brodskaya, E.N., Votyakov, E.V., Tovbin Yu, K.: Critical properties of Lennard-Jones fluids in narrow slit-shaped pores. Langmuir 17, 4451–4458 (2001)

    Article  CAS  Google Scholar 

  • Watanabe, S., Sugiyama, H., Adachi, H., Tanaka, H., Miyahara, M.T.: Free energy analysis for adsorption-induced lattice transition of flexible coordination framework. J. Chem. Phys. 130, 164707 (2009)

    Article  Google Scholar 

  • Yanai, N., Kitayama, K., Hijikata, Y., Sato, H., Matsuda, R., Kubota, Y., Takata, M., Mizuno, M., Uemura, T., Kitagawa, S.: Gas detection by structural variations of fluorescent guest molecules in a flexible porous coordination polymer. Nat. Mater. 10, 787–793 (2011)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Mr. Funahashi, Mr. Fukuoka, and Mr. Harada for their assistance in this work. This work was financially supported by the “Development of Advanced Measurement and Analysis Systems” Project of the Japan Science and Technology Agency (JST), and a Grant-in-Aid for Scientific Research (B) 24360318 from MEXT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minoru T. Miyahara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miyahara, M.T., Numaguchi, R., Hiratsuka, T. et al. Fluids in nanospaces: molecular simulation studies to find out key mechanisms for engineering. Adsorption 20, 213–223 (2014). https://doi.org/10.1007/s10450-013-9588-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-013-9588-2

Keywords

Navigation