Skip to main content
Log in

Chromatographic separation of prebiotic oligosaccharides. Case study: separation of galacto-oligosaccharides on a cation exchanger

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

Chromatographic separation of prebiotic oligosaccharides, galacto-oligosaccharides from a typical post-reaction mixture containing unreacted substrate lactose and by-products glucose and galactose was investigated. A commercial cation-exchange resin Dowex 50WX4 was chosen as a prospective preparative-scale adsorbent and separation performance of its four ionic forms, H+, Na+, K+ and Ca2+, was tested. Since adsorption equilibrium isotherms were linear within the entire investigated range of concentrations, they were determined by pulse experiments for all saccharides present in a typical post reaction mixture including tri- and tetragalacto-oligosaccharides. From the four counter ions listed above, hydrogen offered the best selectivity and column performance. The selected H+-form of the cation exchanger was further investigated by means of frontal analysis where high ionic strength and elevated viscosity appear and can play a substantial role. Breakthrough curves were measured for monosaccharides, lactose, glucose–lactose mixture and a multicomponent commercial mixture of galacto-oligosaccharides, Vivinal® GOS. The breakthrough curves were successfully described by the dispersive plug flow model with linear driving force approximation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

C 0,i :

Equilibrium liquid phase concentration component i (kg m−3)

D a :

Axial dispersion coefficient (m2 s−1)

D m,i :

Molecular diffusivity (m2 s−1)

F :

Solid-liquid phase ratio (–)

k h,i :

Mass transfer coefficients for the homogeneous particle (s−1)

K i :

Adsorption equilibrium constant of component i (–)

L :

Bed length (m)

N i :

Plate number of component i (–)

Pe :

Peclet number (–)

Q :

Volumetric flow rate (m3 s−1)

\( \bar{q}_{i} \) :

Average adsorbed solid-phase concentrations of the component i (kg m−3)

\( q_{i}^{*} \) :

Equilibrium solid phase concentration

R p :

Particle radius (m)

t R :

Retention time (first statistical moment of peak) (s)

t 0 :

Retention time of unretained tracer (s)

u int :

Interstitial velocity (m s−1)

V C :

Bed volume (m3)

z :

Axial coordinate (m)

α:

Selectivity (–)

ε:

Bed voidage (–)

σ2 :

Variance (s2)

τ:

Tortuosity (–)

Gal:

Galactose

Glc:

Glucose

Lac:

Lactose

GOS3:

Galactotriose

GOS4:

Galactotetraose

GOS5:

Galactopentaose

References

  • Antošová, M., Polakovič, M., Báleš, V.: Separation of fructooligosaccharides on a cation-exchange HPLC column in silver form with refractometric detection. Biotechnol. Tech. 13, 889–892 (1999)

    Article  Google Scholar 

  • Bensley, R.R.: Physical chemistry of cells and tissues, Philadelphia and Toronto. Anat. Rec. 95, 75–76 (1946)

    Article  Google Scholar 

  • Brereton, K.R., Green, D.B.: Isolation of saccharides in dairy and soy products by solid-phase extraction coupled with analysis by ligand-exchange chromatography. Talanta 100, 384–390 (2012)

    Article  CAS  Google Scholar 

  • Chilamkurthi, S., Willemsen, J.H., van der Wielen, L.A.M., Poiesz, E., Ottens, M.: High-throughput determination of adsorption equilibria for chromatographic oligosaccharide separations. J. Chromatogr. A 1239, 22–34 (2012)

    Article  CAS  Google Scholar 

  • Cho, S.S., Finocchiaro, T.: Handbook of prebiotics and probiotics ingredients: health benefits and food applications. CRC Press. (2009)

  • Coulier, L., Timmermans, J., Bas, R., van den Dool, R., Haaksman, I., Klarenbeek, B., Slaghek, T., van Dongen, W.: In-depth characterization of prebiotic galacto-oligosaccharides by a combination of analytical techniques. J. Agric. Food Chem. 57, 8488–8495 (2009)

    Article  CAS  Google Scholar 

  • Dembczynski, R., Jankowski, K.: Characterisation of small molecules diffusion in hydrogel-membrane liquid-core capsules. Biochem. Eng. J. 6, 41–44 (2000)

    Article  CAS  Google Scholar 

  • Glueckauf, E., Coates, J.I.: Theory of chromatography. Part 4. The influence of incomplete equilibrium on the front boundary of chromatogram and on the effectiveness of separation. J. Chem. Soc. 1315–1321 (1947)

  • Glueckauf, E., Kitt, G.P.: A theoretical treatment of cation exchangers. III. The hydration of cations in polystyrene sulphonates. Proc. R. Soc. Lond. A 228, 322–341 (1955)

    Article  CAS  Google Scholar 

  • Goulding, R.W.: Liquid chromatography of sugars and related polyhydric alcohols on cation exchangers: the effect of cation variation. J. Chromatogr. A 103, 229–239 (1975)

    Article  CAS  Google Scholar 

  • Gramblička, M., Polakovič, M.: Adsorption equilibria of glucose, fructose, sucrose, and fructooligosaccharides on cation exchange resins. J. Chem. Eng. Data 52, 345–350 (2007)

    Article  Google Scholar 

  • Gyurcsik, B., Nagy, L.: Carbohydrates as ligands: coordination equilibria and structure of the metal complexes. Coord. Chem. Rev. 203, 81–149 (2000)

    Article  CAS  Google Scholar 

  • Hernández, O., Ruiz-Matute, A.I., Olano, A., Moreno, F.J., Luz Sanz, M.: Comparison of fractionation techniques to obtain prebiotic galactooligosaccharides. Int. Dairy J. 19, 531–536 (2009)

    Article  Google Scholar 

  • Juza, M.: Development of an high-performance liquid chromatographic simulated moving bed separation from an industrial perspective. J. Chromatogr. A 865, 35–49 (1999)

    Article  CAS  Google Scholar 

  • Laatikainen, M., Heinonen, J., Sainio, T.: Modeling of chromatographic separation of concentrated-acid hydrolysates. Sep. Purif. Technol. 80, 610–619 (2011)

    Article  CAS  Google Scholar 

  • Lee, J.W., Kwon, T.O., Moon, I.S.: Adsorption of monosaccharides, disaccharides, and maltooligosaccharides on activated carbon for separation of maltopentaose. Carbon 42, 371–380 (2004)

    Article  CAS  Google Scholar 

  • Luz, D.A., Rodrigues, A.K.O., Silva, F.R.C., Torres, A.E.B., Cavalcante Jr, C.L., Brito, E.S., Azevedo, D.C.S.: Adsorptive separation of fructose and glucose from an agroindustrial waste of cashew industry. Bioresour. Technol. 99, 2455–2465 (2008)

    Article  CAS  Google Scholar 

  • Martinsson, E., Samuelson, O.: Partition chromatography of sugars on ion-exchange resins. J. Chromatogr. A 50, 429–435 (1970)

    Article  CAS  Google Scholar 

  • Moravčík, J., Gramblička, M., Wiśniewski, Ł., Vaňková, K., Polakovič, M.: Influence of the ionic form of a cation-exchange adsorbent on chromatographic separation of galactooligosaccharides. Chem. Pap. 66, 583–588 (2012)

    Article  Google Scholar 

  • Nobre, C., Santos, M.J., Dominguez, A., Torres, D., Rocha, O., Peres, A.M., Rocha, I., Ferreira, E.C., Teixeira, J.A., Rodrigues, L.R.: Comparison of adsorption equilibrium of fructose, glucose and sucrose on potassium gel-type and macroporous sodium ion-exchange resins. Anal. Chim. Acta 654, 71–76 (2009)

    Article  CAS  Google Scholar 

  • Nowak, J., Gedicke, K., Antos, D., Piątkowski, W., Seidel-Morgenstern, A.: Synergistic effects in competitive adsorption of carbohydrates on an ion-exchange resin. J. Chromatogr. A 1164, 224–234 (2007)

    Article  CAS  Google Scholar 

  • Otero, M., Zabkova, M., Rodrigues, A.E.: Comparative study of the adsorption of phenol and salicylic acid from aqueous solution onto nonionic polymeric resins. Sep. Purif. Technol. 45, 86–95 (2005)

    Article  CAS  Google Scholar 

  • Pedruzzi, I., Borges da Silva, E.A., Rodrigues, A.E., et al.: Selection of resins, equilibrium and sorption kinetics of lactobionic acid, fructose, lactose and sorbitol. Sep. Purif. Technol. 63, 600–611 (2008)

    Article  CAS  Google Scholar 

  • Rabelo, M., Pereira, C., Rodrigues, S., Rodrigues, A., Azevedo, D.: Chromatographic separation of isomaltooligosaccharides on ion-exchange resins: effect of the cationic form. Adsorpt. Sci. Technol. 30, 773–784 (2012)

    Article  CAS  Google Scholar 

  • Rajendran, A., Paredes, G., Mazzotti, M.: Simulated moving bed chromatography for the separation of enantiomers. J. Chromatogr. A 1216, 709–738 (2009)

    Article  CAS  Google Scholar 

  • Stefansson, M., Westerlund, D.: Ligand-exchange chromatography of carbohydrates and glycoconjugates. J. Chromatogr. A 720, 127–136 (1996)

    Article  CAS  Google Scholar 

  • Tiihonen, J., Peuha, E.L., Latva-Kokko, M., Silander, S., Paatero, E.: Subcritical water as eluent for chromatographic separation of carbohydrates using cation-exchange resins. Sep. Purif. Technol. 44, 166–174 (2005)

    Article  CAS  Google Scholar 

  • Vaňková, K., Gramblička, M., Polakovič, M.: Single-component and binary adsorption equilibria of fructooligosaccharides, glucose, fructose, and sucrose on a Ca-form cation exchanger. J. Chem. Eng. Data 55, 405–410 (2010a)

    Article  Google Scholar 

  • Vaňková, K., Ačai, P., Polakovič, M.: Modelling of fixed-bed adsorption of mono-, di-, and fructooligosaccharides on a cation-exchange resin. Biochem. Eng. J. 49, 84–88 (2010b)

    Google Scholar 

  • Vente, J.A., Bosch, H., de Haan, A.B., Bussmann, P.J.T.: Evaluation of sugar sorption isotherm measurement by frontal analysis under industrial processing conditions. J. Chromatogr. A 1066, 71–79 (2005)

    Article  CAS  Google Scholar 

  • Vente, J.A.: Adsorbent functionality in relation to selectivity and capacity in oligosaccharide separations. Febodruk, (2004)

  • Vera, C., Guerrero, C., Conejeros, R., Illanes, A.: Synthesis of galacto-oligosaccharides by Β-galactosidase from Aspergillus Oryzae using partially dissolved and supersaturated solution of lactose. Enzyme Microb. Technol. 50, 188–194 (2012)

    Article  CAS  Google Scholar 

  • Whitfield, D.M., Stojkovski, S., Sarkar, B.: Metal coordination to carbohydrates. Structures and function. Coord. Chem. Rev. 122, 171–225 (1993)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like kindly thank to FrieslandCampina for providing the Vivinal® GOS syrup. Carla Pereira gratefully acknowledges financial support from Fundação para a Ciência e a Tecnologia, Postdoctoral Research Fellowship SFRH/BPD/71358/2010. The Slovak side was partly supported by the grant of Slovak Agency for Science (VEGA 1/0531/13).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alírio E. Rodrigues.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wiśniewski, Ł., Pereira, C.S.M., Polakovič, M. et al. Chromatographic separation of prebiotic oligosaccharides. Case study: separation of galacto-oligosaccharides on a cation exchanger. Adsorption 20, 483–492 (2014). https://doi.org/10.1007/s10450-013-9587-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-013-9587-3

Keywords

Navigation