, Volume 20, Issue 2–3, pp 267–274 | Cite as

Quiescent hydrothermal synthesis of reduced graphene oxide–periodic mesoporous silica sandwich nanocomposites with perpendicular mesochannel alignments

  • Zheng-Ming Wang
  • Noriko Yoshizawa
  • Katsunori Kosuge
  • Wendong Wang
  • Geoffrey A. Ozin


Quiescent hydrothermal conditions were applied to synthesis of the sandwich nanocomposites of reduced graphite oxide (rGO) and periodic mesoporous silica (PMS) with vertically aligned mesochannels. It was found that the formation of the PMS–rGO–PMS sandwich structure is very sensitive to the surface and synthesis conditions. Although a higher temperature hydrothermal condition promotes reduction of GO and formation of bulky mesoporous nanoparticles, quiescent hydrothermal condition can serve as an alternative approach to obtain the unusual nanocomposites and slightly promote the structural stability of PMS on the surface of rGO.


Reduced graphene oxide Periodic mesoporous silica Sandwich Vertical alignment Nanocomposite 



This work was supported by JSPS Grants-in-Aid for Scientific Research (KAKENHI) Grant Number 24550170.


  1. Aksay, I.A., Trau, M., Manne, S., Honma, I., Yao, N., Zhou, L., Fenter, P., Eisenberger, P.M., Gruner, S.M.: Biomimetic pathways for assembling inorganic thin films. Science 273, 892–898 (1996)CrossRefGoogle Scholar
  2. Allen, M.J., Tung, V.C., Kaner, R.B.: Honeycomb carbon: a review of graphene. Chem. Rev. 110, 132–145 (2010)CrossRefGoogle Scholar
  3. Ang, P.K., Wang, S., Bao, Q., Thong, J.T.L., Loh, K.P.: High-throughput synthesis of graphene by intercalation–exfoliation of graphite oxide and study of ionic screening in graphene transistor. ACS Nano 3, 3587–3594 (2009)CrossRefGoogle Scholar
  4. Beck, J.S., Vartuli, J.C., Roth, W.J., Leonowicz, M.E., Kresge, C.T., Schmitt, K.D., Chu, C.T.-W., Olson, D.H., Sheppard, E.W., McCullen, S.B., Higgins, J.B., Schlenker, J.L.: A new family of mesoporous molecular sieves prepared with liquid crystal templates. J. Am. Chem. Soc. 114, 10834–10843 (1992)CrossRefGoogle Scholar
  5. Chu, Y.-H., Wang, Z.-M., Yamagishi, M., Kanoh, H., Hirotsu, T., Zhang, Y.-X.: Synthesis of nanoporous graphite-derived carbon–silica composites by a mechanochemical intercalation approach. Langmuir 21, 2545–2551 (2005)CrossRefGoogle Scholar
  6. Compton, O.C., Nguyen, S.T.: Graphene oxide, highly reduced graphene oxide, and graphene: versatile building blocks for carbon-based materials. Small 6, 711–723 (2010)CrossRefGoogle Scholar
  7. Dikin, D.A., Stankovich, S., Zimney, E.J., Piner, R.D., Dommett, G.H.B., Evmenenko, G., Nguyen, S.T., Ruoff, R.S.: Preparation and characterization of graphene oxide paper. Nature 448, 457–460 (2007)CrossRefGoogle Scholar
  8. Gregg, S.J., Sing, K.S.W.: Adsorption, Surface Area, and Porosity. Academic Press, New York (1982)Google Scholar
  9. Hoffmann, F., Cornelius, M., Morell, J., Fröba, M.: Silica-based mesoporous organic–inorganic hybrid materials. Angew. Chem. Int. Ed. 45, 3216–3251 (2006)CrossRefGoogle Scholar
  10. Huang, X., Qi, X., Boey, F., Zhang, H.: Graphene-based composites. Chem. Soc. Rev. 41, 666–686 (2012)CrossRefGoogle Scholar
  11. Hummers, W.S., Offeman, R.E.: Preparation of graphite oxides. J. Am. Chem. Soc. 80, 1339 (1958)CrossRefGoogle Scholar
  12. Koganti, V.R., Dunphy, D., Gowrishankar, V., McGehee, M.D., Li, X., Wang, J., Rankin, S.E.: Generalized coating route to silica and titania films with orthogonally titled cylindrical nanopore arrays. Nano Lett. 6, 2567–2570 (2006)CrossRefGoogle Scholar
  13. Kresge, C.T., Leonowicz, M.E., Roth, W.J., Vartuli, J.C., Beck, J.S.: Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359, 710–712 (1992)CrossRefGoogle Scholar
  14. Li, D., Müller, M.B., Gilje, S., Kaner, R.B., Wallace, G.G.: Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 3, 101–105 (2008)CrossRefGoogle Scholar
  15. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)CrossRefGoogle Scholar
  16. Richman, E.K., Brezesinski, T., Tolbert, S.H.: Vertically oriented hexagonal mesoporous films formed through nanometer scale epitaxy. Nat. Mater. 7, 712–717 (2008)CrossRefGoogle Scholar
  17. Rouquerol, F., Rouquerol, J., Sing, K.S.W.: Adsorption by Powders & Porous Solids. Academic Press, San Diego (1999)Google Scholar
  18. Sharma, R., Baik, J.H., Perera, C.J., Strano, M.S.: Anomalously large reactivity of single graphene layers and edges toward electron transfer chemistries. Nano Lett. 10, 398–405 (2010)CrossRefGoogle Scholar
  19. Stankovich, S., Dikin, D.A., Kohlhaas, K.M., Zimney, E.J., Stach, E.A., Piner, R.D., Nguyen, S.T., Ruoff, R.S.: Graphene-based composite materials. Nature 442, 282–286 (2006)CrossRefGoogle Scholar
  20. Szabó, T., Berkesi, O., Forgo, P., Josepovits, K., Sanakis, Y., Petridis, D., Dékány, I.: Evolution of surface functional groups in a series of progressively oxidized graphite oxides. Chem. Mater. 18, 2740–2749 (2006)CrossRefGoogle Scholar
  21. Thommes, M.: Physical adsorption characterization of ordered and amorphous mesoporous materials. In: Lu, G.Q., Zhao, X.S. (eds.) Nanoporous Materials, Science & Engineering, Chap. 11, pp. 318–364. Imperial College Press, London (2004)Google Scholar
  22. Walcarius, A., Sibottier, E., Etienne, M., Ghanbaja, J.: Electrochemically assisted self-assembly of mesoporous silica thin films. Nat. Mater. 6, 602–608 (2007)CrossRefGoogle Scholar
  23. Wang, Z.-M., Hoshinoo, K., Shishibori, K., Kanoh, H., Ooi, K.: Surfactant-mediated synthesis of a novel nanoporous carbon–silica composites. Chem. Mater. 15, 2926–2935 (2003)CrossRefGoogle Scholar
  24. Wang, Z.-M., Wang, W., Coombs, N., Soheilnia, N., Ozin, G.A.: Graphene oxide-periodic mesoporous silica sandwich nanocomposites with vertically oriented channels. ACS Nano 4, 7437–7450 (2010)CrossRefGoogle Scholar
  25. Yang, H., Coombs, N., Sokolov, I., Ozin, G.A.: Free-standing and oriented mesoporous silica films grown at the air–water interface. Nature 381, 589–592 (1996a)CrossRefGoogle Scholar
  26. Yang, H., Coombs, N., Sokolov, I., Ozin, G.A.: Registered growth of mesoporous silica films on graphite. J. Mater. Chem. 7, 1285–1290 (1997)CrossRefGoogle Scholar
  27. Yang, H., Kuperman, A., Coombs, N., Mamiche-Afara, S., Ozin, G.A.: Synthesis of oriented films of mesoporous silica on mica. Nature 379, 703–705 (1996b)CrossRefGoogle Scholar
  28. Zhao, D., Yang, P., Melosh, N., Feng, J., Chmelka, B.F., Stucky, G.D.: Continuous mesoporous silica films with highly ordered large pore structures. Adv. Mater. 10, 1380–1385 (1998)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Zheng-Ming Wang
    • 1
  • Noriko Yoshizawa
    • 2
  • Katsunori Kosuge
    • 1
  • Wendong Wang
    • 3
  • Geoffrey A. Ozin
    • 3
  1. 1.Adsorption and Decomposition Technology Research Group, Environmental Management Technology Research InstituteNational Institute of Advanced Industrial Science and TechnologyTsukubaJapan
  2. 2.Energy Storage Materials Group, Energy Technology Research InstituteNational Institute of Advanced Industrial Science and TechnologyTsukubaJapan
  3. 3.Materials Chemistry Research Group, Chemistry DepartmentUniversity of TorontoTorontoCanada

Personalised recommendations