Skip to main content
Log in

Design of high pressure differential volumetric adsorption measurements with increased accuracy

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

High pressure adsorption measurements for light gases on volumetric equipment are prone to error. Differential units reduce the sensitivity to leakage, gas compressibility, and temperature gradients, but remain highly sensitive to volume uncertainties, the calibration of which is difficult in the presence of low-density, microporous samples. Calibration error can be reduced using a high initial pressure differential and large calibration volume; however, systematic error is prevalent in the literature. Using both analytical and multivariate error analysis, we demonstrate that calibration of the differential unit with the differential pressure transducer significantly decreases volume sensitivity. We show that hydrogen adsorption to GX-31 superactivated carbon at 298 K and 80 bar can be measured with a 7 % error in measurement (i.e. within 0.05 wt% for a 100 mg sample), even when experimental volume calibration is determined only within ~1 %. This represents approximately a 2–7 fold increase in sensitivity relative to previous reports using differential measurements. We also provide a framework for optimizing the design of a volumetric adsorption unit. For virtually any system design, the improved differential methods offer a significant increase in precision relative to the conventional volumetric measurement (from 10- to over 250-fold, depending on the precision of the pressure transducer). This improvement further enhances advantages of the differential unit, in addition to advantages that arise for treating gas compressibility and temperature fluctuations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Belmabkhout, Y., Frere, M., De Weireld, G.: High-pressure adsorption measurements. A comparative study of the volumetric and gravimetric methods. Meas. Sci. Technol. 15(5), 848–858 (2004). doi:10.1088/0957-0233/15/5/010

    Article  CAS  Google Scholar 

  • Blach, T.P., Gray, E.M.: Sieverts apparatus and methodology for accurate determination of hydrogen uptake by light-atom hosts. J. Alloy. Compd. 446, 692–697 (2007). doi:10.1016/j.jallcom.2006.12.061

    Article  Google Scholar 

  • Blackburn, J.L., Parilla, P.A., Gennett, T., Hurst, K.E., Dillon, A.C., Heben, M.J. Measurement of the reversible hydrogen storage capacity of milligram Ti–6Al–4 V alloy samples with temperature programmed desorption and volumetric techniques. J. Alloy. Compd. 454(1–2), 483–490 (2008) doi:http://dx.doi.org/10.1016/j.jallcom.2007.01.006

    Google Scholar 

  • Blackman, J.M., Patrick, J.W., Snape, C.E.: An accurate volumetric differential pressure method for the determination of hydrogen storage capacity at high pressures in carbon materials. Carbon 44(5), 918–927 (2006) doi:http://dx.doi.org/10.1016/j.carbon.2005.10.032

  • Broom, D.P., Moretto, P.: Accuracy in hydrogen sorption measurements. J. Alloy. Compd. 446–447(0), 687–691 (2007) doi:http://dx.doi.org/10.1016/j.jallcom.2007.03.022

    Google Scholar 

  • Browning, D.J., Gerrard, M.L., Lakeman, J.B., Mellor, I.M., Mortimer, R.J., Turpin, M.C.: Studies into the storage of hydrogen in carbon nanofibers: proposal of a possible reaction mechanism. Nano Lett. 2(3), 201–205 (2002). doi:10.1021/nl015576g

    Article  CAS  Google Scholar 

  • Brunauer, S., Emmett, P.H., Teller, E.: Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60, 309–319 (1938). doi:10.1021/ja01269a023

    Article  CAS  Google Scholar 

  • Checchetto, R., Trettel, G., Miotello, A.: Sievert-type apparatus for the study of hydrogen storage in solids. Meas. Sci. Technol. 15(1), 127–130 (2004). doi:10.1088/0957-0233/15/1/017

    Article  CAS  Google Scholar 

  • Cheng, H.H., Deng, X.X., Li, S.L., Chen, W., Chen, D.M., Yang, K.: Design of PC based high pressure hydrogen absorption/desorption apparatus. Int. J. Hydrogen Energy 32(14), 3046–3053 (2007) doi:http://dx.doi.org/10.1016/j.ijhydene.2007.01.010

  • Curl, R.L., Ramanathan, S., Way, S. D.: UNCANAL. In: Uncertainty Analysis of a Single Equation; Macro written for Mathematica 4.0 ed. University of Michigan, Department of Chemical Engineering (1999)

  • Demirocak, D.E., Srinivasan, S.S., Ram, M.K., Goswami, D.Y., Stefanakos, E.K.: Volumetric hydrogen sorption measurements—uncertainty error analysis and the importance of thermal equilibration time. Int. J. Hydrogen Energy 38(3), 1469–1477 (2013) doi:http://dx.doi.org/10.1016/j.ijhydene.2012.11.013

  • Elliott, J.R., Lira, C.T.: Introductory Chemical Engineering Thermodynamics. Prentice Hall (2012)

  • Furukawa, H., Miller, M.A., Yaghi, O.M.: Independent verification of the saturation hydrogen uptake in MOF-177 and establishment of a benchmark for hydrogen adsorption in metal-organic frameworks. J. Mater. Chem. 17(30), 3197–3204 (2007). doi:10.1039/b703608f

    Article  CAS  Google Scholar 

  • Gross, K.J., Carrington, R.K., Barcelo, S., Karkamkar, A., Purewal, J., Ma, S., Zhou, H., Dantzer, P., Ott, K., Burrell, T., Semeslberger, T., Pivak, Y., Dam, B., Chandra, D : Recommended best practices for the characterization of storage properties of hydrogen storage materials. H2 Technol. Consult. (2012). http://www1.eere.energy.gov/hydrogenandfuelcells/pdfs/best_practices_hydrogen_storage.pdf

  • Jain, P., Fonseca, D.A., Schaible, E., Lueking, A.D.: Hydrogen uptake of platinum-doped graphite nanoribers and stochastic analysis of hydrogen spillover. J. Phys. Chem. C 111(4), 1788–1800 (2007). doi:10.1021/jp0654922

    Article  CAS  Google Scholar 

  • Kiyobayashi, T., Takeshita, H.T., Tanaka, H., Takeichi, N., Zuttel, A., Schlapbach, L., Kuriyama, N.: Hydrogen adsorption in carbonaceous materials—how to determine the storage capacity accurately. J. Alloy. Compd. 330, 666–669 (2002). doi:10.1016/s0925-8388(01)01436-0

    Article  Google Scholar 

  • Lachawiec, A.J., DiRaimondo, T.R., Yang, R.T.: A robust volumetric apparatus and method for measuring high pressure hydrogen storage properties of nanostructured materials. Rev. Sci. Instrum. 79(6) (2008). doi:06390610.1063/1.2937820

  • Langmuir, I.: A theory of adsorption. Phys. Rev. 6(1), 79–80 (1915)

    CAS  Google Scholar 

  • Leachman, J.W., Jacobsen, R.T., Penoncello, S.G., Lemmon, E.W.: Fundamental equations of state for parahydrogen, normal hydrogen, and orthohydrogen. J. Phys. Chem. Ref. Data 38(3). (2009) doi:10.1063/1.3160306

  • Lee, Y.W., Clemens, B.M., Gross, K.J.: Novel Sieverts’ type volumetric measurements of hydrogen storage properties for very small sample quantities. J. Alloy. Compd. 452(2), 410–413 (2008). doi:10.1016/j.jallcom.2006.11.014

    Article  CAS  Google Scholar 

  • Li, Q.: Hydrogen Storage in Carbon-Supported Catalysts via Hydrogen Spillover, PhD Thesis. Pennsylvania State University (2012)

  • Li, Y.W., Yang, R.T.: Hydrogen storage in metal-organic frameworks by bridged hydrogen spillover. J. Am. Chem. Soc. 128(25), 8136–8137 (2006). doi:10.1021/ja061681m

    Article  CAS  Google Scholar 

  • Luzan, S.M., Talyzin, A.V.: Hydrogen adsorption in Pt catalyst/MOF-5 materials. Micropor. Mesopor. Mater. 135(1–3), 201–205 (2010). doi:10.1016/j.micromeso.2010.07.018

    Article  CAS  Google Scholar 

  • Luzan, S.M., Talyzin, A.V.: Comment to the “Response to “Hydrogen adsorption in Pt catalyst/MOF-5 materials”” by Li et al. Micropor. Mesopor. Mater. 139(1–3), 216–218 (2011) doi:10.1016/j.micromeso.2010.10.005

  • Maggs, F.A.P., Schwabe, P.H., Williams, J.H.: Adsorption of helium on carbons-influence on measurement of density. Nature 186(4729), 956–958 (1960). doi:10.1038/186956b0

    Article  CAS  Google Scholar 

  • Malbrunot, P., Vidal, D., Vermesse, J., Chahine, R., Bose, T.K.: Adsorbent helium density measurement and its effect on adsorption isotherms at high pressure. Langmuir 13(3), 539–544 (1997). doi:10.1021/la950969e

    Article  CAS  Google Scholar 

  • Moffat, R.J.: Describing the Uncertainties in Experimental Results. Exp. Therm. Fluid Sci. 1(1), 3–17 (1988). doi:10.1016/0894-1777(88)90043-x

    Article  Google Scholar 

  • Mohammad, S., Fitzgerald, J., Robinson, R.L., Gasem, K.A.M.: Experimental uncertainties in volumetric methods for measuring equilibrium adsorption. Energy Fuels 23(5), 2810–2820 (2009). doi:10.1021/ef8011257

    Article  CAS  Google Scholar 

  • Panella, B., Hirscher, M., Roth, S.: Hydrogen adsorption in different carbon nanostructures. Carbon 43(10), 2209–2214 (2005). doi:10.1016/j.carbon.2005.03.037

    Article  CAS  Google Scholar 

  • Parambhath, V.B., Nagar, R., Ramaprabhu, S.: Effect of nitrogen doping on hydrogen storage capacity of palladium decorated graphene. Langmuir 28(20), 7826–7833 (2012). doi:10.1021/la301232r

    Article  CAS  Google Scholar 

  • Parambhath, V.B., Nagar, R., Sethupathi, K., Ramaprabhu, S.: Investigation of spillover mechanism in palladium decorated hydrogen exfoliated functionalized graphene. J. Phys. Chem. C 115(31), 15679–15685 (2011). doi:10.1021/jp202797q

    Article  CAS  Google Scholar 

  • Parilla, P.A.: Hydrogen sorbent measurement qualification and characterization. In: DOE Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting 2012, p. 12. National Renewable Energy Technology Laboratory (2012)

  • Qajar, A., Peer, M., Rajagopalan, R., Foley, H.C.: High pressure hydrogen adsorption apparatus: design and error analysis. Int. J. Hydrogen Energy 37(11), 9123–9136 (2012) doi:10.1016/j.ijhydene.2012.03.002

    Google Scholar 

  • Ramaprabhu, S., Rajalakshmi, N., Weiss, A.: Design and development of hydrogen absorption/desorption high pressure apparatus based on the pressure reduction method. Int. J. Hydrogen Energy 23(9), 797–801 (1998) doi:10.1016/S0360-3199(97)00131-6

    Google Scholar 

  • Robens, E., Keller, J.U., Massen, C.H., Staudt, R.: Sources of error in sorption and density measurements. J. Therm. Anal. Calorim. 55(2), 383–387 (1999). doi:10.1023/a:1010195013633

    Article  CAS  Google Scholar 

  • Rouquerol, J., Rouquerol, F., Sing, K.S.W.: Adsorption by powders and porous solids. Academic Press (1999)

  • Rzepka, M., Bauer, E., Reichenauer, G., Schliermann, T., Bernhardt, B., Bohmhammel, K., Henneberg, E., Knoll, U., Maneck, H.E., Braue, W.: Hydrogen storage capacity of catalytically grown carbon nanofibers. J. Phys. Chem. B 109(31), 14979–14989 (2005). doi:10.1021/jp051371a

    Article  CAS  Google Scholar 

  • Sevilla, M., Fuertes, A.B., Mokaya, R.: High density hydrogen storage in superactivated carbons from hydrothermally carbonized renewable organic materials. Energy Environ. Sci. 4(4), 1400–1410 (2011). doi:10.1039/c0ee00347f

    Article  CAS  Google Scholar 

  • Sieverts, A.Z.: Phys. Chem. Leipzig 129, 60 (1908)

    Google Scholar 

  • Sircar: Fundamentals of Adsorption, vol. 7. IK International, Chiba (2002)

  • Springer, C., Major, C.J., Kammerme K: Low pressure adsorption of helium on microporous solids. J. Chem. Eng. Data 14(1), 78–&. (1969) doi:10.1021/je60040a017

    Google Scholar 

  • Stadie, N.P., Purewal, J.J., Ahn, C.C., Fultz, B.: Measurements of hydrogen spillover in platinum doped superactivated carbon. Langmuir 26(19), 15481–15485 (2010). doi:10.1021/la9046758

    Article  CAS  Google Scholar 

  • Stuckert, N.R., Wang, L.F., Yang, R.T.: Characteristics of hydrogen storage by spillover on Pt-doped carbon and catalyst-bridged metal organic framework. Langmuir 26(14), 11963–11971 (2010). doi:10.1021/La101377u

    Article  CAS  Google Scholar 

  • Tibbetts, G.G., Meisner, G.P., Olk, C.H.: Hydrogen storage capacity of carbon nanotubes, filaments, and vapor-grown fibers. Carbon 39(15), 2291–2301 (2001) doi:10.1016/S0008-6223(01)00051-3

    Google Scholar 

  • Webb, P.A., Orr, C.: Corporation. Analytical Methods in Fine Particle Technology. Micromeritics Instrument Corporation, MI (1997)

    Google Scholar 

  • Zhang, C., Lu, X.S., Gu, A.Z.: How to accurately determine the uptake of hydrogen in carbonaceous materials. Int. J. Hydrogen Energy 29(12), 1271–1276 (2004). doi:10.1016/j.ijhydene.2003.12.001

    Article  CAS  Google Scholar 

  • Zhou, W., Wu, H., Hartman, M.R., Yildirim, T.: Hydrogen and methane adsorption in metal−organic frameworks: a high-pressure volumetric study. J. Phys. Chem. C. 111(44), 16131–16137 (2007). doi:10.1021/jp074889i

    Article  CAS  Google Scholar 

  • Zielinski, J.M., Coe, C.G., Nickel, R.J., Romeo, A.M., Cooper, A.C., Pez, G.P.: High pressure sorption isotherms via differential pressure measurements. Adsorpt J. Int. Adsorpt. Soc. 13(1), 1–7. (2007) doi:10.1007/s10450-007-9005-9

    Google Scholar 

  • Zlotea, C., Moretto, P., Steriotis, T.: A Round Robin characterisation of the hydrogen sorption properties of a carbon based material. Int. J. Hydrogen Energy 34(7), 3044–3057 (2009). doi:10.1016/j.ijhydene.2009.01.079

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the U.S. Department of Energy, Energy Efficiency and Renewable Energy program, award DE-FG36-08GO18139. The following people worked with us in the initial design and build of the equipment: Peter Eklund, David Narehood, Kofi Adu. Funding for design and purchase of components was provided by Penn State University and the Materials Research Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angela D. Lueking.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 881 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sircar, S., Wang, CY. & Lueking, A.D. Design of high pressure differential volumetric adsorption measurements with increased accuracy. Adsorption 19, 1211–1234 (2013). https://doi.org/10.1007/s10450-013-9558-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-013-9558-8

Keywords

Navigation