Skip to main content
Log in

Diffusion mechanism of CO2 in 13X zeolite beads

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

A systematic study of the diffusion mechanism of CO2 in commercial 13X zeolite beads is presented. In order to gain a complete understanding of the diffusion process of CO2, kinetic measurements with a zero length column (ZLC) system and a volumetric apparatus have been carried out. The ZLC experiments were carried out on a single bead of zeolite 13X at 38 °C at a partial pressure of CO2 of 0.1 bar, conditions representative of post-combustion capture. Experiments with different carrier gases clearly show that the diffusion process is controlled by the transport inside the macropores. Volumetric measurements using a Quantachrome Autosorb system were carried out at different concentrations. These experiments are without a carrier gas and the low pressure measurements show clearly Knudsen diffusion control in both the uptake cell and the bead macropores. At increasing CO2 concentrations the transport mechanism shifts from Knudsen diffusion in the macropores to a completely heat limited process. Both sets of experiments are consistent with independent measurements of bead void fraction and tortuosity and confirm that under the range of conditions that are typical of a carbon capture process the system is controlled by macropore diffusion mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Ahn, H., Moon, J.H., Hyun, S.H., Lee, C.H.: Diffusion mechanism of carbon dioxide in zeolite 4A and CaX pellets. Adsorption 10, 111–128 (2004)

    Article  CAS  Google Scholar 

  • Bird, R.B., Stewart, W.E., Lightfoot, E.N.: Transport Phenomena, 2nd edn. Wiley, New York (2002)

    Google Scholar 

  • Brandani, F., Ruthven, D.M., Coe, C.G.: Measurement of adsorption equilibrium by the zero length column (ZLC) technique Part 1: single-component systems. Ind. Eng. Chem. Res. 42, 1451–1461 (2003)

    Article  CAS  Google Scholar 

  • Brandani, S.: Analysis of the piezometric method for the study of diffusion in microporous solids: isothermal case. Adsorption 4, 17–24 (1998)

    Article  CAS  Google Scholar 

  • Brandani, S., Jama, M.A., Ruthven, D.M.: ZLC measurements under non-linear conditions. Chem. Eng. Sci. 55(7), 1205–1212 (2000)

    Article  CAS  Google Scholar 

  • Brandani, S., Ruthven, D.M.: Analysis of ZLC desorption curves for gaseous systems. Adsorption 2, 133–143 (1996)

    Article  CAS  Google Scholar 

  • Carniglia, S.C.: Construction of the tortuosity factor from porosimetry. J. Catal. 102, 401–418 (1986)

    Article  CAS  Google Scholar 

  • Cavenati, S., Grande, C.A., Rodrigues, A.E.: Adsorption equilibrium of methane, carbon dioxide, and nitrogen on zeolite 13X at high pressures. J. Chem. Eng. Data 49, 1095–1101 (2004)

    Article  CAS  Google Scholar 

  • Chou, C.T., Chen, C.Y.: Carbon dioxide recovery by vacuum swing adsorption. Sep. Purif. Technol. 39, 51–64 (2004)

    Article  CAS  Google Scholar 

  • Chue, K.T., Kim, J.N., Yoo, Y.J., Cho, S.H.: Comparison of activated carbon and zeolite 13X for CO2 recovery from flue gas by pressure swing adsorption. Ind. Eng. Chem. Res. 34, 591–598 (1995)

    Article  CAS  Google Scholar 

  • Crank, J.: The Mathematics of Diffusion. Oxford University Press, London (1956)

    Google Scholar 

  • Cunnigham, R.E., Williams, R.J.J.: Diffusion in Gases and Porous Media. Plenum Press, New York (1980)

    Book  Google Scholar 

  • Dasgupta, S., Biswas, N., Aarti, Gode, N.G., Divekar, S., Nanoti, A., Goswami, A.N.: CO2 recovery from mixtures with nitrogen in a vacuum swing adsorber using metal organic framework adsorbent: a comparative study. Int. J. Greenh Gas Control 7, 225–229 (2012)

    Article  CAS  Google Scholar 

  • Duncan, W.L., Moller, K.P.: The effect of a crystal size distribution on ZLC experiments. Chem. Eng. Sci. 57(14), 2641–2652 (2002)

    Article  CAS  Google Scholar 

  • Ebner, A.D., Ritter, J.A.: State-of-the-art adsorption and membrane separation processes for carbon dioxide production from carbon dioxide emitting industries. Sep. Sci. Technol. 44, 1273–1421 (2009)

    Article  CAS  Google Scholar 

  • Eic, M., Ruthven, D.M.: A new experimental technique for measurement of intracrystalline diffusivity. Zeolites 8(1), 40–45 (1988)

    Article  CAS  Google Scholar 

  • Friedrich, D., Ferrari, M.C., Brandani, S.: Efficient simulation and acceleration of convergence for a dual piston pressure swing adsorption system. Ind. Eng. Chem. Res. (2013). doi:10.1021/ie3036349

  • Giesy, T.J., Wang, Y., LeVan, M.D.: Measurement of mass transfer rates in adsorbents: new combined-technique frequency response apparatus and application to CO2 in 13X zeolite. Ind. Eng. Chem. Res. 51, 11509–11517 (2012)

    Article  CAS  Google Scholar 

  • Gomes, V.G., Yee, K.W.K.: Pressure swing adsorption for carbon dioxide sequestration from exhaust gases. Sep. Purif. Technol. 28, 161–171 (2002)

    Article  CAS  Google Scholar 

  • Harlick, P.J.E., Tezel, F.H.: An experimental adsorbent screening study for CO2 removal from N2. Microporous Mesoporous Mater. 76, 71–79 (2004)

    Article  CAS  Google Scholar 

  • IEA.: Energy Technology Transitions for Industry: Strategies for the Next Industrial Revolution. International Energy Agency, Paris (2009)

  • Ishibashi, M., Ota, H., Akutsu, N., Umeda, S., Tajika, M., Izumi, J., Yasutake, A., Kabata, T., Kageyama, Y.: Technology for removing carbon dioxide from power plant flue gas by the physical adsorption method. Energy Convers. Manag. 37, 929–933 (1996)

    Article  CAS  Google Scholar 

  • Kaerger, J., Ruthven, D.M., Theodorou, D.N.: Diffusion in Nanoporous Materials. Weinheim, Germany (2012)

    Book  Google Scholar 

  • Kikkinides, E.S., Yang, R.T., Cho, S.H.: Concentration and recovery of CO2 from flue gas by pressure swing adsorption. Ind. Eng. Chem. Res. 32, 2714–2720 (1993)

    Article  CAS  Google Scholar 

  • Kočiřík, M., Struve, P., Bulow, M.: Analytical solution of simultaneous mass and heat transfer in zeolite crystals under constant-volume/variable-pressure conditions. J. Chem. Soc. Faraday Trans. 1(80), 2167–2174 (1984)

    Google Scholar 

  • Kuramochi, T., Ramírez, A., Turkenburg, W., Faaij, A.: Comparative assessment of CO2 capture technologies for carbon-intensive industrial processes. Prog. Energy Combust. Sci. 38, 87–112 (2012)

    Article  CAS  Google Scholar 

  • Lee, L.-K., Ruthven, D.M.: Analysis of thermal effects in adsorption rate measurements. J. Chem. Soc. Faraday Trans. 1 75, 2406–2422 (1979)

    Article  CAS  Google Scholar 

  • Levitz, P.: Knudsen diffusion and excitation transfer in random porous media. J. Phys. Chem. 97, 3813–3818 (1993)

    Article  CAS  Google Scholar 

  • Li, G., Xiao, P., Webley, P., Zhang, J., Singh, R., Marshall, M.: Capture of CO2 from high humidity flue gas by vacuum swing adsorption with zeolite 13X. Adsorption 14, 415–422 (2008)

    Article  CAS  Google Scholar 

  • Luis, P., Van Gerven, T., Van der Bruggen, B.: Recent developments in membrane-based technologies for CO2 capture. Prog. Energ. Combust. 38, 419–448 (2012)

    Google Scholar 

  • Onyestyák, G.: Comparison of dinitrogen, methane, carbon monoxide, and carbon dioxide mass-transport dynamics in carbon and zeolite molecular sieves. Helv. Chim. Acta 94, 206–217 (2011)

    Article  Google Scholar 

  • Onyestyák, G., Rees, L.V.C.: Frequency response study of adsorbate mobilities of different character in various commercial adsorbents. J. Phys. Chem. B 103, 7469–7479 (1999)

    Article  Google Scholar 

  • Onyestyák, G., Shen, D., Rees, L.V.C.: Frequency-response study of micro- and macro-pore diffusion in manufactured zeolite pellets. J. Chem. Soc. Faraday Trans. 91, 1399–1405 (1995)

    Article  Google Scholar 

  • Papadopoulos, G.K., Theodorou, D.N., Vasenkov, S., Kaerger, J.: Mesoscopic simulations of the diffusivity of ethane in beds of NaX zeolite crystals: comparison with pulsed field gradient NMR measurements. J. Chem. Phys. 126(094702), 1–8 (2007)

    Google Scholar 

  • Ruthven, D.M.: Principles of Adsorption and Adsorption Processes. Wiley, New York (1984)

    Google Scholar 

  • Ruthven, D.M., Lee, L.-K., Yucel, H.: Kinetics of non-isothermal sorption in molecular sieve crystals. AIChE J. 26(1), 16–23 (1980)

    Article  CAS  Google Scholar 

  • Ruthven, D.M., Xu, Z.: Diffusion of oxygen and nitrogen in 5A zeolite crystals and commercial 5A pellets. Chem. Eng. Sci. 48(18), 3307–3312 (1993)

    Article  CAS  Google Scholar 

  • Schumacher, R., Ehrhardt, K., Karge, H.G.: Determination of diffusion coefficients from sorption kinetic measurements considering the influence of nonideal gas expansion. Langmuir 15, 3965–3971 (1999)

    Article  CAS  Google Scholar 

  • Silva, J.A.C., Schumann, K., Rodrigues, A.E.: Sorption and kinetics of CO2 and CH4 in binderless beads of 13X zeolite. Microporous Mesoporous Mater. 158, 219–228 (2012)

    Article  CAS  Google Scholar 

  • Siriwardane, R.V., Shen, M.S., Fisher, E.P.: Adsorption of CO2, N2, and O2 on natural zeolites. Energy Fuels 17, 571–576 (2003)

    Article  CAS  Google Scholar 

  • Xiao, P., Zhang, J., Webley, P., Li, G., Singh, R., Todd, R.: Capture of CO2 from flue gas streams with zeolite 13X by vacuum-pressure swing adsorption. Adsorption 14, 575–582 (2008)

    Article  CAS  Google Scholar 

  • Zalc, J.M., Reyes, S.C., Iglesia, E.: The effects of diffusion mechanism and void structure on transport rates and tortuosity factors in complex porous structures. Chem. Eng. Sci. 59, 2947–2960 (2004)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to dedicate this paper to Fred Leavitt, who is a pioneer in adsorption technology. We hope that he will enjoy this study of the fundamentals of mass transport in commercial beads, linked to an industrially relevant adsorption separation process. We would also like to thank the anonymous reviewer for pointing out the need to correct the Knudsen diffusivity using Derjaguin’s approach. Financial support from the EPSRC through Grants EP/F034520/1; EP/G062129/1 and EP/I010939/1 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Brandani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, X., Mangano, E., Friedrich, D. et al. Diffusion mechanism of CO2 in 13X zeolite beads. Adsorption 20, 121–135 (2014). https://doi.org/10.1007/s10450-013-9554-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-013-9554-z

Keywords

Navigation