Skip to main content
Log in

On-line optimizing control of the intermittent simulated moving bed process

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

The I-SMB process is one of the modifications to the standard SMB process that has been demonstrated both theoretically and experimentally to exhibit rather competitive performance (Katsuo and Mazzotti in J Chromatogr A 1217:1354, 2010a, 3067, 2010b; Katsuo et al. in J Chromatogr A 1218:9345, 2011). This work aims at showing that also the I-SMB process can be controlled and optimized by using the optimizing on-line controller developed at ETH Zurich for the standard SMB process (Erdem et al. in Ind Eng Chem Res 43:405, 2004a, 3895, 2004b; Grossmann et al. in Adsorption 14:423, 2008, AIChE J 54:1942008). This is achieved by using a virtual I-SMB unit based on a detailed model of the process; past experience with the on-line controller shows that the controller’s behavior on a virtual platform is essentially the same as in laboratory experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

a i,k b i,k :

Parameters in bi-Langmuir isotherm for component i

c i :

Fluid phase concentration of component i

c TF :

Total feed concentration

c Pi :

Concentration of component i at port P

\(\bar{c}_{{\rm P},i}\) :

Average concentration of of component i at port P

D i :

Axial dispersion coefficient of component i

H i :

Henry’s constant of component i

k s,i a v :

Product of mass transfer coefficient and specific surface of component i

L :

Column length

m j :

Flow rate ratio in section j of conventional SMB and I-SMB

n * i :

Adsorbed phase concentration of component i in equilibrium with the mobile phase

n j :

Number of the columns in section j

Pr :

Productivity

\(\Updelta P\) :

Pressure drop

Q j :

Volumetric flow rate in section j

\(\hat{Q}_j\) :

Average volumetric flow rate in section j

Q P :

Volumetric flow rate at port P

s k :

Slack variables

S :

Column cross-section

SC :

Dimensionless solvent consumption

t :

Time

t * :

Switch time

u :

Superficial velocity

V :

Column volume

X i :

Product purity

Y i :

Recovery of component i

α:

step ratio of I-SMB

ε* :

Overall bed void fraction

εb :

Inter particle void fraction

λ:

Weights in objective function

ϕ :

Pressure drop factor

A:

Component A

B:

Component B

i :

Component index

j :

Section index

SMB:

Conventional SMB

I-SMB:

I-SMB

References

  • Abel, S., Erdem, G., Mazzotti, M., Morari, M., Morbidelli, M.: Optimizing control of simulated moving beds—linear isotherm. J. Chromatogr. A 1033, 229 (2004)

    Article  CAS  Google Scholar 

  • Amanullah, M., Grossmann, C., Mazzotti, M., Morari, M., Morbidelli, M.: Experimental implementation of automatic ‘cycle to cycle’ control of a chiral simulated moving bed separation. J. Chromatogr. A 1165, 100 (2007)

    Article  CAS  Google Scholar 

  • Erdem, G., Abel, S., Morari, M., Mazzotti, M., Morbidelli, M., Lee, J.H.: Automatic control of simulated moving beds. Ind. Eng. Chem. Res. 43, 405 (2004)

    Article  CAS  Google Scholar 

  • Erdem, G., Abel, S., Morari, M., Mazzotti, M., Morbidelli, M.: Automatic control of simulated moving beds-II: nonlinear isotherm. Ind. Eng. Chem. Res. 43, 3895 (2004)

    Article  CAS  Google Scholar 

  • Gentilini, A., Migliorini, C., Mazzotti, M., Morbidelli, M.: Experimental implementation of automatic ‘cycle to cycle’ control to a nonlinear chiral simulated moving bed separation. J. Chromatogr. A 805, 37 (1998)

    Article  CAS  Google Scholar 

  • Grossmann, C., Amanullah, M., Morari, M., Mazzotti, M., Morbidelli, M.: Optimizing control of simulated moving bed separations of mixtures subject to the generalized Langmuir isotherm. Adsorption 14, 423 (2008)

    Article  CAS  Google Scholar 

  • Grossmann, C., Amanullah, M., Erdem, G., Mazzotti, M., Morbidelli, M., Morari, M.: 'Cycle to cycle' optimizing control of simulated moving beds. AIChE J. 54, 194 (2008)

    Article  CAS  Google Scholar 

  • Grossmann, C.: Optimizing model predictive control of multi-column chromatographic processes. PhD Dissertation, ETH Zurich (2009)

  • Grossmann, C., Langel, C., Mazzotti, M., Morari, M., Morbidelli, M.: Experimental implementation of automatic ‘cycle to cycle’ control to a nonlinear chiral simulated moving bed separation. J. Chromatogr. A 1217, 2013 (2010)

    Article  CAS  Google Scholar 

  • Katsuo, S., Mazzotti, M.: Intermittent simulated moving bed chromatography: 1. Design criteria and cyclic steady-state. J. Chromatogr. A 1217, 1354 (2010)

    Article  CAS  Google Scholar 

  • Katsuo, S., Mazzotti, M.: Intermittent simulated moving bed chromatography: 2. Separation of Tröger's base enantiomers. J Chromatogr. A 1217, 3067 (2010)

    Article  CAS  Google Scholar 

  • Katsuo, S., Langel, C., Sandré, A.-L., Mazzotti, M.: Intermittent simulated moving bed chromatography: 3. Separation of Tröger's base enantiomers under nonlinear conditions. J. Chromatogr. A 1218, 9345 (2011)

    Article  CAS  Google Scholar 

  • Kessler, L.C., Seidel-Morgenstern, A.: Improving performance of simulated moving bed chromatography by fractionation and feed-back of outlet streams. J. Chromatogr. A 1207, 55 (2008)

    Article  CAS  Google Scholar 

  • Langel, C., Grossmann, C., Morbidelli, M., Morari, M., Mazzotti, M.: Implementation of an automated on-line high-performance liquid chromatography monitoring system for ‘cycle-to-cycle’ control of simulated moving beds. J. Chromatogr. A 1216, 8806 (2009)

    Article  CAS  Google Scholar 

  • Langel, C., Grossmann, C., Jermann, S., Mazzotti, M., Morari, M., Morbidelli, M.: Experimental optimizing control of the simulated moving bed separation of Tröger’s base enantiomers. Ind. Eng. Chem. Res. 49, 11996 (2010)

    Article  CAS  Google Scholar 

  • Ludemann-Hombourger, O., Nicoud, R.M., Bailly, M.: The "VARICOL" process: a new multicolumn continuous chromatographic process. Sep. Sci. Technol. 35, 1829 (2000)

    Article  CAS  Google Scholar 

  • Mazzotti, M.: Equilibrium theory based design of simulated moving bed processes for a generalized Langmuir isotherm. J. Chromatogr. A 1126, 311 (2006)

    Article  CAS  Google Scholar 

  • Mazzotti, M., Storti, G., Morbidelli, M.: Optimal operation of SMB units for nonlinear chromatographic separations. J. Chromatogr. A 769, 3 (1997)

    Article  CAS  Google Scholar 

  • Rajendran, A., Paredes, G., Mazzotti, M.: Simulated moving bed chromatography for the separation of enantiomers. J. Chromatogr. A 1216, 709 (2009)

    Article  CAS  Google Scholar 

  • Schramm, H., Kienle, A., Kaspereit, M., Seidel-Morgenstern, A.: Improved operation of simulated moving bed processes through cyclic modulation of feed flow and feed concentration. Chem. Eng. Sci. 58, 5217 (2003)

    Article  CAS  Google Scholar 

  • Sturm, J.F.: Using SeDuMi 1.02, a Matlab toolbox for optimization over symmetric cones. Optim. Method. Softw. 11–12, 625 (1999)

    Google Scholar 

  • Zhang, Z., Mazzotti, M., Morbidelli, M.: PowerFeed operation of simulated moving bed units: changing flow-rates during the switching interval. J. Chromatogr. A 1006, 87 (2003)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Mazzotti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Katsuo, S., Grossmann, C., Morari, M. et al. On-line optimizing control of the intermittent simulated moving bed process. Adsorption 20, 109–119 (2014). https://doi.org/10.1007/s10450-013-9553-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-013-9553-0

Keywords

Navigation