Skip to main content
Log in

Capacity and kinetic measurements of methane and nitrogen adsorption on H+-mordenite at 243–303 K and pressures to 900 kPa using a dynamic column breakthrough apparatus

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

A dynamic column breakthrough (DCB) apparatus was used to measure the capacity and kinetics of CH4 and N2 adsorption on zeolite H+-mordenite at temperatures in the range 243.8–302.9 K and pressures up to 903 kPa. Equilibrium adsorption capacities of pure CH4 and pure N2 were determined by these dynamic experiments and Langmuir isotherm models were regressed to these pure fluid data over the ranges of temperature and pressure measured. A linear driving force-based model of adsorption in a fixed bed was developed to extract the mass transfer coefficients (MTCs) for CH4 and N2 from the pure gas experimental data. The MTCs determined from single adsorbate experiments were used to successfully predict the component breakthroughs for experiments with equimolar CH4 + N2 gas mixtures in the DCB apparatus. The MTC of CH4 on H+-mordenite at 902 kPa was 0.013 s−1 at 302.9 K and 0.004 s−1 at 243.6 K. The MTC of N2 on H+-mordenite at 902 kPa was 0.011 s−1 at 302.9 K and 0.005 s−1 at 243.5 K. The values of the MTCs measured for each gas at a constant feed gas flow rate were observed to increase in a linear trend with the inverse of pressure. However, the apparent MTCs obtained at the lowest pressures studied (≈105 kPa) were systematically below this linear trend, because of the slightly longer residence time of helium in the mass spectrometer used to monitor effluent composition. Nevertheless, the pure fluid dynamic breakthrough data at these lowest pressures could still be reasonably well described using MTC values estimated from the linear trend. Furthermore, the results of dynamic breakthrough experiments with mixtures were all reliably predicted using the capacity and MTC correlations developed for the pure fluids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ackley, M.W., Yang, R.T.: Kinetic separation by pressure swing adsorption—method of characteristics model. AIChE J. 36(8), 1229–1238 (1990)

    Article  CAS  Google Scholar 

  • American Energies Pipeline, LLC: Improve Gas Quality-Nitrogen Rejection Unit. http://www.nitrogenrejectionunit.com (2011). Accessed 29 Oct 2010

  • Baker, R.W.: Future directions of membrane gas separation technology. Ind. Eng. Chem. Res. 41, 1393–1411 (2002)

    Article  CAS  Google Scholar 

  • Bevington, P.R., Robinson, D.K.: Data Reduction and Error Analysis for the Physical Sciences. McGraw-Hill, Boston (1992)

    Google Scholar 

  • Bird, R.B., Stewart, W.E., Lightfoot, E.N.: Transport Phenomena, 2nd edn. Wiley International, New York (2002)

    Google Scholar 

  • Casas, N., Schell, J., Pini, R., Mazzotti, M.: Fixed bed adsorption of CO2/H2 mixtures on activated carbon: experiments and modeling. Adsorption 18(2), 143–161 (2012). doi:10.1007/s10450-012-9389-z

    Article  CAS  Google Scholar 

  • Cavenati, S., Grande, C.A., Rodrigues, A.: Separation of CH4/CO2/N2 mixtures by layered pressure swing adsorption for upgrade of natural gas. Chem. Eng. Sci. 61, 3893–3906 (2006)

    Article  CAS  Google Scholar 

  • Churchill, S.W., Bernstein, M.: Correlating equation for forced-convection from gases and liquids to a circular-cylinder in cross-flow. J. Heat Transf. 99(2), 300–306 (1977)

    Article  CAS  Google Scholar 

  • Delgado, J.: A critical review of dispersion in packed beds. Heat Mass Transf. 42, 279–310 (2006). doi:10.1007/s00231-005-0019-0

    Article  CAS  Google Scholar 

  • Delgado, J.A., Uguina, M.A., Gomez, J.M., Ortega, L.: Adsorption equilibrium of carbon dioxide, methane and nitrogen onto Na- and H-mordenite at high pressures. Sep. Purif. Technol. 48(3), 223–228 (2006a). doi:10.1016/j.seppur.2005.07.027

    Article  CAS  Google Scholar 

  • Delgado, J.A., Uguina, M.A., Sotelo, J.L., Ruiz, B.: Modelling of the fixed-bed adsorption of methane/nitrogen mixtures on silicalite pellets. Sep. Purif. Technol. 50(2), 192–203 (2006b). doi:10.1016/j.seppur.2005.11.026

    Article  CAS  Google Scholar 

  • Guntuka, S., Farooq, S., Rajendran, A.: A- and B-Site substituted lanthanum cobaltite perovskite as high temperature oxygen sorbent. 2. Column dynamics study. Ind. Eng. Chem. Res. 47(1), 163–170 (2008). doi:10.1021/ie070860p

    Article  CAS  Google Scholar 

  • Hofman, P.S., Rufford, T.E., Chan, K.I., May, E.F.: A dynamic column breakthrough apparatus for adsorption capacity measurements with quantitative uncertainties. Adsorption 18(3–4), 251–263 (2012). doi:10.1007/s10450-012-9398-y

    Article  CAS  Google Scholar 

  • Jayaraman, A., Hernández-Maldonado, A.J., Yang, R.T., Chinn, D., Munson, C.L., Mohr, D.H.: Clinoptilolites for nitrogen/methane separation. Chem. Eng. Sci. 59, 2407–2417 (2004)

    Article  CAS  Google Scholar 

  • Jensen, N.K., Rufford, T.E., Watson, G.C.Y., Zhang, D., Chan, K.I., May, E.F.: Screening zeolites for gas separation applications involving methane, nitrogen, and carbon dioxide. J. Chem. Eng. Data 57(1), 106–113 (2012). doi:10.1021/je200817w

    Google Scholar 

  • Kast, W.: Adsorption aus der gasphase—ingenieurwissenschaftliche Grundlagen und technische verfahren. VCH, Weinheim (1988)

    Google Scholar 

  • Kidnay, A.J., Parrish, W.: Fundamentals of Natural Gas Processing. CRC Press, Boca Raton (2006)

    Google Scholar 

  • Kunz, O., Klimeck, R., Wagner, W., Jaeschke, M.: The GERG-2004 Wide-Range Reference Equation of State for Natural Gases and Other Mixtures. GERG Technical Monograph. In. Fortschr.-Ber. VDI, VDI-Verlag, Düsseldorf (Germany), (2006)

  • Kuznicki, S.M., Bell, V.A., Petrovic, I., Blosser, P.W.: Separation of nitrogen from mixtures thereof with methane utilizing barium exchanged ETS-4. US Patent 5,989,316 (1999)

  • Lanfrey, P.Y., Kuzeljevic, Z.V., Dudukovic, M.P.: Tortuosity model for fixed beds randomly packed with identical particles. Chem. Eng. Sci. 65(5), 1891–1896 (2010). doi:10.1016/j.ces.2009.11.011

    Article  CAS  Google Scholar 

  • Lemmon, E.W., Huber, M.L., McLinden, M.O.: REFPROP—Reference Fluid Thermodynamic and Transport Properties. NIST Standard Reference Database 23 (2007)

  • Malbrunot, P., Vidal, D., Vermesse, J., Chahine, R., Bose, T.K.: Adsorbent helium density measurement and its effect on adsorption isotherms at high pressure. Langmuir 13, 539–544 (1997)

    Article  CAS  Google Scholar 

  • Malek, A., Farooq, S.: Determination of equilibrium isotherms using dynamic column breakthrough and constant flow equilibrium desorption. J. Chem. Eng. Data 41(1), 25–32 (1996)

    Article  CAS  Google Scholar 

  • Mitariten, M.: Nitrogen removal from natural gas with the molecular gate™ adsorption process. In: 88th Annual Convention of the Gas Processors Association 2009, San Antonio, TX, 8–11 March 2009, pp. 544–555. Gas Processors Association

  • Mohamed, M.M.: Heat capacities, phase transitions and structural properties of cation-exchanged H-mordenite zeolites. Thermochim. Acta 372(1–2), 75–83 (2001)

    Article  CAS  Google Scholar 

  • Mulgundmath, V.P., Jones, R.A., Tezel, F.H., Thibault, J.: Fixed bed adsorption for the removal of carbon dioxide from nitrogen: breakthrough behaviour and modelling for heat and mass transfer. Sep. Purif. Technol. 85, 17–27 (2012)

    Article  CAS  Google Scholar 

  • Myers, A.L., Prausnitz, J.M.: Thermodynamics of mixed-gas adsorption. AIChE J. 11, 121–127 (1965)

    Article  CAS  Google Scholar 

  • Puértolas, B., Navarro, M.V., Lopez, J.M., Murillo, R., Mastral, A.M., Garcia, T.: Modelling the heat and mass transfer of propane onto a ZSM-5 zeolite. Sep. Purif. Technol. 86, 127–136 (2012)

    Article  Google Scholar 

  • Rajendran, A., Kariwala, V., Farooq, S.: Correction procedures for extra-column effects in dynamic column breakthrough experiments. Chem. Eng. Sci. 63(10), 2696–2706 (2008). doi:10.1016/j.ces.2008.02.023

    Article  CAS  Google Scholar 

  • Reid, R.C., Prausnitz, J.M., Poling, B.E.: The Properties of Gases and Liquids, 4th edn. McGraw-Hill, New York (1987)

    Google Scholar 

  • Schiesser, W.E.: The Numerical Method of Lines. Academic Press, San Diego (1991)

    Google Scholar 

  • Simo, M., Brown, C.J., Hlavacek, V.: Simulation of pressure swing adsorption in fuel ethanol production process. Comput. Chem. Eng. 32(7), 1635–1649 (2008). doi:10.1016/j.compchemeng.2007.07.011

    Article  CAS  Google Scholar 

  • Sircar, S.: Basic research needs for design of adsorptive gas separation processes. Ind. Eng. Chem. Res. 45(16), 5435–5448 (2006). doi:10.1021/ie051056a

    Article  CAS  Google Scholar 

  • Sircar, S., Hufton, J.R.: Why does the linear driving force model for adsorption kinetics work? Adsorption 6(2), 137–147 (2000). doi:10.1023/A:1008965317983

    Article  CAS  Google Scholar 

  • Sudibandriyo, M., Pan, Z., Fitzgerald, J.E., Robinson, R.L., Gasem, K.A.M.: Adsorption of methane, nitrogen, carbon dioxide, and their binary mixtures on dry activated carbon at 318.2 K and pressures up to 13.6 MPa. Langmuir 19(13), 5323–5331 (2003). doi:10.1021/la020976k

    Google Scholar 

  • Valenzuela, D.P., Myers, A.L.: Adsorption Equilibrium Data Handbook. Advanced Reference Series. Prentice Hall, Englewood Cliffs (1989)

    Google Scholar 

  • Warmuzinski, K., Tanczyk, M.: Multicomponent pressure swing adsorption. 1. Modelling of large-scale PSA installations. Chem. Eng. Process. 36(2), 89–99 (1997)

    Article  CAS  Google Scholar 

  • Watson, G., May, E.F., Graham, B.F., Trebble, M.A., Trengove, R.D., Chan, K.I.: Equilibrium adsorption measurement of pure nitrogen, carbon dioxide, and methane on a carbon molecular sieve at cryogenic temperatures and high pressures. J. Chem. Eng. Data 54, 2701–2707 (2009). doi:10.1021/je900224w

    Article  CAS  Google Scholar 

  • Yang, R.T.: Gas Separation by Adsorption Processes. Series on Chemical Engineering, vol. 1. World Scientific, Singapore (1997)

Download references

Acknowledgments

The research was funded by Chevron Energy Technology Company, the Western Australian Energy Research Alliance and the Australian Research Council (Project LP0776928). We thank Craig Grimm for helping to construct the apparatus, as well as David Zhang for his contribution to the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric F. May.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saleman, T.L.H., Watson, G.C.Y., Rufford, T.E. et al. Capacity and kinetic measurements of methane and nitrogen adsorption on H+-mordenite at 243–303 K and pressures to 900 kPa using a dynamic column breakthrough apparatus. Adsorption 19, 1165–1180 (2013). https://doi.org/10.1007/s10450-013-9546-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-013-9546-z

Keywords

Navigation