Skip to main content
Log in

Preparation of modified γ-alumina as stationary phase in gas–solid chromatography and its separation performance for hydrogen isotopes

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

On the basis of impregnation method, several stationary phases were prepared using γ-Al2O3 with the solution of transition metal salts and the breakthrough curves of gas chromatograph for H2 isotopes were analyzed under the temperature of liquid nitrogen. The effects of carrier gas, flow rate and doping concentration on the separation performance for H2 and D2 were systematically investigated. The overall results showed that the surface areas and adsorptive capacities of modified γ-Al2O3 were slightly lower than unmodified one while the separation performance and symmetry of chromatographic peaks of the former were more excellent. In addition, the chromatographic peaks of ortho- and para-H2 were no longer separated and the retention time shortened to half on columns of modified γ-Al2O3. All the magnetic transition metal ions modified γ-Al2O3 did very well for the separation of H2/D2 under the conditions of neon as carrier gas with a flow rate of 60 mL/min and column lengths of 1.0 m and injection amounts of 0.1 mL. Especially, the MnCl2 modified γ-Al2O3 exhibited the best performance for separating H2/D2 with an optimum doping concentration of 20 wt%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Beenakker, J.J.M., Borman, V.D., Krylov, S.Y.: Molecular transport in subnanometer pores: zero-point energy, reduced dimensionality and quantum sieving. Chem. Phys. Lett. 232, 379–382 (1995)

    Article  CAS  Google Scholar 

  • Cai, J., Pan, H., Wang, Y.: Luminescence properties of red-emitting Ca2Al2SiO7:Eu3+ nano- particles prepared by sol-gel method. Rare Met. 30, 374–380 (2011)

    Article  CAS  Google Scholar 

  • Cai, J., Pan, H., Wang, Y.: Synthesis and luminescence properties of Ca2SiO4-based red phosphors with Sm3+ doping for white LEDs. Int. J. Miner. Metall. Mater. 19, 663–667 (2012a)

    Article  CAS  Google Scholar 

  • Cai, J., Xing, Y., Zhao, X.: Quantum sieving: feasibility and challenges for the separation of hydrogen isotopes in nanoporous materials. RSC Adv. 2, 8579–8586 (2012b)

    Article  CAS  Google Scholar 

  • Chu, X., Zhou, Y., Zhou, L., Kou, D.: Analysis of hydrogen isotopes with gas chromatography. Chin. J. Anal. Chem. 34, 629–632 (2006)

    CAS  Google Scholar 

  • Cunningham, C.M., Chapin, D.S., Johnston, H.L.: Separation of orthohydrogen from para- hydrogen and of paradeuterium from orthodeuterium by preferential adsorption. J. Am. Chem. Soc. 80, 2382–2384 (1958)

    Article  CAS  Google Scholar 

  • Cunningham, C.M., Johnston, H.L.: The surface catalysis of the ortho- to para-conversion in liquid hydrogen by paramagnetic oxides on alumina. J. Am. Chem. Soc. 80, 2377–2382 (1958)

    Article  CAS  Google Scholar 

  • Darkrim, F.L., Malbrunot, P., Tartaglia, G.P.: Review of hydrogen storage by adsorption in carbon nanotubes. Int. J. Hydrog. Energy 27, 193–202 (2002)

    Article  CAS  Google Scholar 

  • Degtyareva, O.F., Bondareva, L.T.: Gas-chromatographic analysis of mixtures of hydrogen isotopes. J. Anal. Chem. 59, 442–446 (2004)

    Article  CAS  Google Scholar 

  • Deng, X., Luo, D., Qin, C., Qian, X., Yang, W.: Hydrogen isotopes separation using frontal displacement chromatography with Pd–Al2O3 packed column. Int. J. Hydrog. Energy 37, 10774–10778 (2012)

    Article  CAS  Google Scholar 

  • Esswein, S.T., Florance, H.V., Baillie, L., Lippens, J., Barran, P.E.: A comparison of mass spectrometry based hydrogen deuterium exchange methods for probing the cyclophilin A cyclosporin complex. J. Chromatogr. A 1217, 6709–6717 (2010)

    Article  CAS  Google Scholar 

  • Fukada, S., Fuchinoue, K., Nishikawa, M.: Isotope separation factor and isotopic exchange rate between hydrogen and deuterium of palladium. J. Nucl. Mater. 226, 311–318 (1995)

    Article  CAS  Google Scholar 

  • Fukada, S., Fujiwara, H.: Comparison of chromatographic methods for hydrogen isotope separation by Pd beds. J. Chromatogr. A 898, 125–131 (2000)

    Article  CAS  Google Scholar 

  • Fukada, S., Samsun, B.M., Fujiwara, H.: Hydrogen absorption-desorption cycle experiment of Pd–Al2O3 pellets. Int. J. Hydrog. Energy 27, 177–181 (2002)

    Article  CAS  Google Scholar 

  • Grinev, T.A., Buchachenko, A.A., Krems, R.V.: Separation of ortho- and para-hydrogen in van der Waals complex formation. ChemPhysChem 8, 815–818 (2007)

    Article  CAS  Google Scholar 

  • Hunt, P.P., Smith, H.A.: The separation of hydrogen, deuterium and hydrogen deuteride mixtures by gas chromatography. J. Phys. Chem. 65, 87–89 (1961)

    Article  CAS  Google Scholar 

  • Johnson, E.R., Yang, W., Davidson, E.R.: Spin-state splittings, highest-occupied-molecular-orbital and lowest-unoccupied-molecular-orbital energies, and chemical hardness. J. Chem. Phys. 133, 164107 (2010)

    Article  Google Scholar 

  • Kawamura, Y., Iwai, Y., Yamanishi, T., Konishi, S., Nishi, M.: Analysis of hydrogen isotopes with a micro gas chromatograph. Fusion Eng. Des. 49–50, 855–861 (2000a)

    Article  Google Scholar 

  • Kawamura, Y., Konishi, S., Nishi, M.: Adsorption isotherms of hydrogen isotopes on molecular sieves 5A at low temperature. J. Nucl. Sci. Technol. 37, 536–542 (2000b)

    Article  CAS  Google Scholar 

  • Kawamura, Y., Konishi, S., Nishi, M.: Development of a micro gas chromatograph for the analysis of hydrogen isotope gas mixtures in the fusion fuel cycle. Fusion Eng. Des. 58–59, 389–394 (2001)

    Article  Google Scholar 

  • Kawamura, Y., Onishi, Y., Okuno, K., Yamanishi, T.: Hydrogen isotope separation capability of low temperature mordenite column for gas chromatograph. Fusion Eng. Des. 83, 1384–1387 (2008)

    Article  CAS  Google Scholar 

  • Kehimkar, B., Hoggard, J.C., Nadeau, J.S., Synovec, R.E.: Targeted mass spectral ratio analysis: a new tool for gas chromatography-mass spectrometry. Talanta 103, 267–275 (2013)

    Article  CAS  Google Scholar 

  • Kotoh, K., Nishikawa, T., Kashio, Y.: Multi-component adsorption characteristics of hydrogen isotopes on synthetic zeolite 5A-type at 77.4 K. J. Nucl. Sci. Technol. 39, 435–441 (2002)

    Article  CAS  Google Scholar 

  • Lau, J.T., Vogel, M., Langenberg, A., Hirsch, K., Rittmann, J., Zamudio-Bayer, V., Möller, T., von Issendorff, B.: Highest occupied molecular orbital-lowest unoccupied molecular orbital gaps of doped silicon clusters from core level spectroscopy. J. Chem. Phys. 134, 041102 (2011)

    Article  CAS  Google Scholar 

  • Li, R., Jiang, Z., Guan, Y., Yang, H., Liu, B.: Effects of metal ion on the water structure studied by the Raman O–H stretching spectrum. J. Raman Spectrosc. 40, 1200–1204 (2009)

    Article  CAS  Google Scholar 

  • Li, Y., Lei, X., Jockusch, S., Chen, J.Y.C., Frunzi, M., Johnson, J.A., Lawler, R.G., Murata, Y., Murata, M., Komatsu, K., Turro, N.J.: A magnetic switch for spin-catalyzed inter- conversion of nuclear spin isomers. J. Am. Chem. Soc. 132, 4042–4043 (2010)

    Article  CAS  Google Scholar 

  • Li, Y., Lei, X., Lawler, R.G., Murata, Y., Komatsu, K., Turro, N.J.: Distance-dependent para- H2 → ortho-H2 conversion in H2@C60 derivatives covalently linked to a nitroxide radical. J. Phys. Chem. Lett. 2, 741–744 (2011)

    Article  CAS  Google Scholar 

  • Liao, J., Zhang, Y., Wang, W., Xie, Y., Chang, L.: Preparation of γ-Al2O3 sorbents loaded with metal components and removal of thiophene from coking benzene. Adsorption 18, 181–187 (2012)

    Article  CAS  Google Scholar 

  • Moore, W.R., Ward, H.R.: The separation of orthohydrogen and parahydrogen. J. Am. Chem. Soc. 80, 2909–2910 (1958)

    Article  CAS  Google Scholar 

  • Moore, W.R., Ward, H.R.: Gas-solid chromatography of H2, HD, and D2 isotopic separation and heats of adsorption on alumina. J. Phys. Chem. 64, 832 (1960)

    Article  CAS  Google Scholar 

  • Murray, L.J., Dincǎ, M., Long, J.R.: Hydrogen storage in metal-organic frameworks. Chem. Soc. Rev. 38, 1294–1314 (2009)

    Article  CAS  Google Scholar 

  • Naik, Y., Rao, G.A.R., Venugopal, V.: Separation of hydrogen isotopes by gas chromatogra- phy using a vanadium oxide coated molecular sieve (4A) packed column. J. Radioanal. Nucl. Chem. 247, 11–14 (2001)

    Article  CAS  Google Scholar 

  • Naik, Y.P., Gupta, N.K., Pillai, K.T., Rao, G.A.R., Venugopal, V.: Gas chromatographic separation of hydrogen isotopes on columns packed with alumina, modified alumina and sol-gel alumina. J. Chromatogr. A 1219, 177–179 (2012)

    Article  CAS  Google Scholar 

  • Nikitin, A., Li, X., Zhang, Z., Ogasawara, H., Dai, H., Nilsson, A.: Hydrogen storage in carbon nanotubes through the formation of stable C–H bonds. Nano Lett. 8, 162–167 (2008)

    Article  CAS  Google Scholar 

  • Peng, S., Wang, H., Fu, Y.: Tritium chemistry and techniques. Prog. Chem. 23, 1379–1385 (2011)

    CAS  Google Scholar 

  • Samsun, B.M., Fukada, S., Fujiwara, H.: Hydrogen isotope absorption amount and rate of Pd–Al2O3 pellets. Int. J. Hydrog. Energy 26, 225–229 (2001)

    Article  CAS  Google Scholar 

  • Sandler, Y.L.: The adsorption and ortho-para conversion of hydrogen on diamagnetic solids. II. The relative adsorbabilities of orthohydrogen and parahydrogen. J. Phys. Chem. 58, 58–61 (1954)

    Article  CAS  Google Scholar 

  • Schell, J., Casas, N., Pini, R., Mazzotti, M.: Pure and binary adsorption of CO2, H2, and N2 on activated carbon. Adsorption 18, 49–65 (2012)

    Article  CAS  Google Scholar 

  • Schlapbach, L., Züttel, A.: Hydrogen-storage materials for mobile applications. Nature 414, 353–358 (2001)

    Article  CAS  Google Scholar 

  • Sing, K.S.W., Everett, D.H., Haul, R.A.W., Moscou, L., Pierotti, R.A., Rouquerol, J., Siemieniewska, T.: Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl. Chem. 57, 603–619 (1985)

    Article  CAS  Google Scholar 

  • Stanciu, V., Stefanescu, D., David, E.: Chemically modified glasses for analysis of hydrogen isotopes by gas chromatography. J. Mater. Process. Technol. 118, 309–315 (2001)

    Article  CAS  Google Scholar 

  • Snyder, L.R., Kirkland, J.J., Glajch, J.L.: Practical HPLC method development, 2nd edn. John Wiley & Sons, New York (1997)

    Book  Google Scholar 

  • Wang, Y., Bhatia, S.K.: Quantum effect-mediated hydrogen isotope mixture separation in slit pore nanoporous materials. J. Phys. Chem. C 113, 14953–14962 (2009a)

    Article  CAS  Google Scholar 

  • Wang, Y., Bhatia, S.K.: Simulation of quantum separation of binary hydrogen isotope mixtures in carbon slit pores. Mol. Simul. 35, 162–171 (2009b)

    Article  Google Scholar 

  • Wang, L., Yang, R.T.: Hydrogen storage on carbon-based adsorbents and storage at ambient temperature by hydrogen spillover. Catal. Rev.-Sci. Eng. 52, 411–461 (2010)

    Article  CAS  Google Scholar 

  • Wang, X., Lu, G., Qin, C.: Preparation and characterization of gas chromatography using MnCl2\γ-Al2O3 stationary phase for on-line hydrogen isotopes analysis. Chin. J. Anal. Chem. 39, 1595–1600 (2011)

    CAS  Google Scholar 

  • White, D., Lassettre, E.N.: Theory of ortho-para hydrogen separation by adsorption at low temperatures, isotope separation. J. Chem. Phys. 32, 72–84 (1960)

    Article  CAS  Google Scholar 

  • Yang, Y.X., Singh, R.K., Webley, P.A.: Hydrogen adsorption in transition metal carbon nano- structures. Adsorption 14, 265–274 (2008)

    Article  CAS  Google Scholar 

  • Zhao, X., Xiao, B., Fletcher, A.J., Thomas, K.M., Bradshaw, D., Rosseinsky, M.J.: Hysteretic adsorption and desorption of hydrogen by nanoporous metal-organic frameworks. Science 306, 1012–1015 (2004)

    Article  CAS  Google Scholar 

  • Zhao, X., Xiao, B., Fletcher, A.J., Thomas, K.M.: Hydrogen adsorption on functionalized nanoporous activated carbons. J. Phys. Chem. B 109, 8880–8888 (2005)

    Article  CAS  Google Scholar 

  • Zhang, D., Zhou, L., Su, W., Sun, Y.: Equilibrium modeling for hydrogen isotope separation by cryogenic adsorption. Chin. J. Chem. Eng. 14, 526–531 (2006)

    Article  CAS  Google Scholar 

  • Zhou, J., Gao, L., Wang, K.: Hydrogen isotope separation by cryogenic gas chromatography using the combined column of 5 Å molecular sieve and Al2O3. Int. J. Hydrog. Energy 31, 2131–2135 (2006)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank financial supports from the “Hundred Talents Program” of Chinese Academy of Science (No. KJCX2-YW-W34) and the National Natural Science Foundation of China (No. 21073216, 21173246). We also thank Prof. Yi Wang worked at School of Applied Physics and Materials, Wuyi University, for his assistance on Raman spectra measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuebo Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cai, J., Xing, Y., Yang, M. et al. Preparation of modified γ-alumina as stationary phase in gas–solid chromatography and its separation performance for hydrogen isotopes. Adsorption 19, 919–927 (2013). https://doi.org/10.1007/s10450-013-9499-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-013-9499-2

Keywords

Navigation