Adsorption

, Volume 19, Issue 1, pp 131–142 | Cite as

On the description of isotherms of CH4 and C2H4 adsorption on graphite from subcritical to supercritical conditions

Reconciliation between computer simulation and experimental data
  • Mus’ab Abdul Razak
  • D. D. Do
  • Toshihide Horikawa
  • Keita Tsuji
  • D. Nicholson
Article

Abstract

Different potential models for methane and ethylene are tested for their suitability for the description of bulk phase behavior, including coexistence, and adsorption on a graphite surface under sub- and super-critical conditions using GCMC simulation. Under sub-critical conditions, those intermolecular potential models that describe correctly the vapor–liquid equilibria were found to be adequate for the description of surface adsorption. These potential models can also give a good account of adsorption under supercritical conditions or near-critical conditions, provided the experimental data (in terms of excess) are correctly obtained with the reliably determined void volume as illustrated in this paper with methane adsorption.

Keywords

Adsorption Graphon Methane Ethylene Supercritical 

Supplementary material

10450_2012_9433_MOESM1_ESM.pdf (279 kb)
(PDF 182 kB)

References

  1. Abdul Razak, M.a., Do, D., Birkett, G.: Evaluation of the interaction potentials for methane adsorption on graphite and in graphitic slit pores. Adsorption 17(2), 385–394 (2011) CrossRefGoogle Scholar
  2. Agarwal, R.K., Schwarz, J.A.: Analysis of high-pressure adsorption of gases on activated carbon by potential-theory. Carbon 26(6), 873–887 (1988) CrossRefGoogle Scholar
  3. Allen, M.P., Tildesley, D.J.: Computer Simulation of Liquids, p. 385. Oxford University Press, Oxford (1989) Google Scholar
  4. Aranovich, G.L., Donohue, M.D.: Adsorption of supercritical fluids. J. Colloid Interface Sci. 180(2), 537–541 (1996) CrossRefGoogle Scholar
  5. Avgul, N.N., Kiselev, A.V.: Physical adsorption of gases and vapous on graphitized carbon blacks. Chem. Phys. Carbon 6, 1–124 (1970) Google Scholar
  6. Bourasseau, E., Haboudou, M., Boutin, A., Fuchs, A.H., Ungerer, P.: New optimization method for intermolecular potentials: optimization of a new anisotropic united atoms potential for olefins: prediction of equilibrium properties. J. Chem. Phys. 118(7), 3020–3034 (2003) CrossRefGoogle Scholar
  7. Darkrim, F., Vermesse, J., Malbrunot, P., Levesque, D.: Monte Carlo simulations of nitrogen and hydrogen physisorption at high pressures and room temperature. Comparison with experiments. J. Chem. Phys. 110(8), 4020–4027 (1999) CrossRefGoogle Scholar
  8. Darkrim, F.L., Malbrunot, P., Tartaglia, G.P.: Review of hydrogen storage by adsorption in carbon nanotubes. Int. J. Hydrog. Energy 27(2), 193–202 (2002) CrossRefGoogle Scholar
  9. Do, D.D., Do, H.D.: Adsorption of argon from sub- to supercritical conditions on graphitized thermal carbon black and in graphitic slit pores: a grand canonical Monte Carlo simulation study. J. Chem. Phys. 123(8) (2005a) Google Scholar
  10. Do, D.D., Do, H.D.: Effects of potential models in the vapor–liquid equilibria and adsorption of simple gases on graphitized thermal carbon black. Fluid Phase Equilib. 236(1,2), 169–177 (2005b) CrossRefGoogle Scholar
  11. Do, D.D., Do, H.D.: Adsorption of argon on homogeneous graphitized thermal carbon black and heterogeneous carbon surface. J. Colloid Interface Sci. 287(2), 452–460 (2005c) CrossRefGoogle Scholar
  12. Do, D.D., Do, H.D., Nicholson, D.: A computer appraisal of BET theory, BET surface area and the calculation of surface excess for gas adsorption on a graphite surface. Chem. Eng. Sci. 65(10), 3331–3340 (2010) CrossRefGoogle Scholar
  13. El-Merraoui, M., Aoshima, M., Kaneko, K.: Micropore size distribution of activated carbon fiber using the density functional theory and other methods. Langmuir 16(9), 4300–4304 (2000) CrossRefGoogle Scholar
  14. Fan, C.Y., Herrera, L.F., Do, D.D., Nicholson, D.: New method to determine surface area and its energy distribution for nonporous solids: a computer simulation and experimental study. Langmuir 26(8), 5610–5623 (2010) CrossRefGoogle Scholar
  15. Frenkel, D., Smit, B.: Understanding Molecular Simulation: From Algorithms to Applications, p. 443. Academic Press, San Diego (1996) Google Scholar
  16. Gao, W.H., Butler, D., Tomasko, D.L.: High-pressure adsorption of CO2 on NaY zeolite and model prediction of adsorption isotherms. Langmuir 20(19), 8083–8089 (2004) CrossRefGoogle Scholar
  17. Hocker, T., Rajendran, A., Mazzotti, M.: Measuring and modeling supercritical adsorption in porous solids. Carbon dioxide on 13X zeolite and on silica gel. Langmuir 19(4), 1254–1267 (2003) CrossRefGoogle Scholar
  18. Jiang, S.Y., Zollweg, J.A., Gubbins, K.E.: High-pressure adsorption of methane and ethane in activated carbon and carbon-fibers. J. Phys. Chem. 98(22), 5709–5713 (1994) CrossRefGoogle Scholar
  19. Johnson, J.K., Zollweg, J.A., Gubbins, K.E.: The Lennard-Jones equation of state revisited. Mol. Phys. 78(3), 591–618 (1993) CrossRefGoogle Scholar
  20. Jorgensen, W.L., Maxwell, D.S., TiradoRives, J.: Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc. 118(45), 11225–11236 (1996) CrossRefGoogle Scholar
  21. Kaneko, K., Murata, K.: An analytical method of micropore filling of a supercritical gas. Adsorption 3(3), 197–208 (1997) CrossRefGoogle Scholar
  22. Kowalczyk, P., Tanaka, H., Kaneko, K., Terzyk, A.P., Do, D.D.: Grand canonical Monte Carlo simulation study of methane adsorption at an open graphite surface and in slitlike carbon pores at 273 K. Langmuir 21(12), 5639–5646 (2005) CrossRefGoogle Scholar
  23. Linstrom, P.J., Mallard, W.G.: NIST Chemistry WebBook (2001). Available from: http://webbook.nist.gov
  24. Liu, Z.J., Do, D.D., Nicholson, D.: Effects of confinement on the molar enthalpy of argon adsorption in graphitic cylindrical pores: a grand canonical Monte Carlo (GCMC) simulation study. J. Colloid Interface Sci. 361(1), 278–287 (2011) CrossRefGoogle Scholar
  25. Malbrunot, P., Vidal, D., Vermesse, J., Chahine, R., Bose, T.K.: Adsorption measurements of argon, neon, krypton, nitrogen, and methane on activated carbon up to 650 MPa. Langmuir 8(2), 577–580 (1992) CrossRefGoogle Scholar
  26. Malbrunot, P., Vidal, D., Vermesse, J.: Storage of gases at room temperature by adsorption at high pressure. Appl. Therm. Eng. 16(5), 375–382 (1996) CrossRefGoogle Scholar
  27. Martin, M.G., Siepmann, J.I.: Transferable potentials for phase equilibria. I. United-atom description of n-alkanes. J. Phys. Chem. B 102(14), 2569–2577 (1998) CrossRefGoogle Scholar
  28. Matranga, K.R., Myers, A.L., Glandt, E.D.: Storage of natural gas by adsorption on activated carbon. Chem. Eng. Sci. 47(7), 1569–1579 (1992) CrossRefGoogle Scholar
  29. Menon, P.G.: Adsorption at high pressures. Chem. Rev. 68, 277–294 (1968) CrossRefGoogle Scholar
  30. Michels, A., Wijker, H., Wijker, H.: Isotherms of argon between 0 °C and 150 °C and pressures up to 2900 atmospheres. Physica 15(7), 627–633 (1949) CrossRefGoogle Scholar
  31. Murata, K., El-Merraoui, M., Kaneko, K.: A new determination method of absolute adsorption isotherm of supercritical gases under high pressure with a special relevance to density-functional theory study. J. Chem. Phys. 114(9), 4196–4205 (2001) CrossRefGoogle Scholar
  32. Nath, S.K., Banaszak, B.J., de Pablo, J.J.: A new united atom force field for alpha-olefins. J. Chem. Phys. 114(8), 3612–3616 (2001) CrossRefGoogle Scholar
  33. Nguyen, V.T., Do, D.D., Nicholson, D.: On the heat of adsorption at layering transitions in adsorption of noble gases and nitrogen on graphite. J. Phys. Chem. C 114(50), 22171–22180 (2010) CrossRefGoogle Scholar
  34. Nicholson, D., Parsonage, G.: Computer Simulation and the Statistical Mechanics of Adsorption, p. 398. Academic Press, London (1982) Google Scholar
  35. Ohba, T., Omori, T., Kanoh, H., Kaneko, K.: Cluster structures of supercritical CH4 confined in carbon nanospaces with in situ high-pressure small-angle X-ray scattering and grand canonical Monte Carlo simulation. J. Phys. Chem. B 108(1), 27–30 (2004) CrossRefGoogle Scholar
  36. Ozawa, S., Kusumi, S., Ogino, Y.: Physical adsorption of gases at high-pressure. IV. Improvement of Dubinin-Astakhov adsorption equation. J. Colloid Interface Sci. 56(1), 83–91 (1976) CrossRefGoogle Scholar
  37. Panagiotopoulos, A., Quirke, N., Stapleton, M., Tildesley, D.J.: Phase equilibria by simulation in the Gibbs ensemble: alternative derivation, generalization and application to mixtures and membrane equilibria. Mol. Phys. 63, 527–545 (1988) CrossRefGoogle Scholar
  38. Poirier, E., Chahine, R., Bose, T.K.: Hydrogen adsorption in carbon nanostructures. Int. J. Hydrog. Energy 26(8), 831–835 (2001) CrossRefGoogle Scholar
  39. Ryckaert, J., Bellemans, A.: Molecular dynamics of liquid alkanes. Faraday Discuss. Chem. Soc. 66, 95–106 (1978) CrossRefGoogle Scholar
  40. Salem, M.M.K., Braeuer, P., von Szombathely, M., Heuchel, M., Harting, P., Quitzsch, K., Jaroniec, M.: Thermodynamics of high-pressure adsorption of argon, nitrogen, and methane on microporous adsorbents. Langmuir 14(12), 3376–3389 (1998) CrossRefGoogle Scholar
  41. Setzmann, U., Wagner, W.: A new equation of state and tables of thermodynamic properties for methane covering the range from the melting line to 625 K at pressure up to 1000 MPa. J. Phys. Chem. 20(6), 1061–1155 (1991) Google Scholar
  42. Smukala, J., Span, R., Wagner, W.: New equation of state for ethylene covering the fluid region for temperatures from the melting line to 450 K at pressures up to 300 MPa. J. Phys. Chem. Ref. Data 29(5), 1053–1121 (2000) CrossRefGoogle Scholar
  43. Specovius, J., Findenegg, G.H.: Physical adsorption of gases at high-pressure: argon and methane onto graphitized carbon black. Ber. Bunsenges. Phys. Chem. 82(2), 174–180 (1978) Google Scholar
  44. Specovius, J., Findenegg, G.H.: Study of a fluid-solid interface over a wide density range including the critical region. I. Surface excess of ethylene-graphite. Ber. Bunsenges. Phys. Chem. 84(7), 690–696 (1980) CrossRefGoogle Scholar
  45. Spyriouni, T., Economou, I.G., Theodorou, D.N.: Phase equilibria of mixtures containing chain molecules predicted through a novel simulation scheme. Phys. Rev. Lett. 80(20), 4466–4469 (1998) CrossRefGoogle Scholar
  46. Steele, W.A.: The physical interaction of gases with crystalline solids: I. Gas-solid energies and properties of isolated adsorbed atoms. Surf. Sci. 36(1), 317–352 (1973) CrossRefGoogle Scholar
  47. Sun, Y.X., Spellmeyer, D., Pearlman, D.A., Kollman, P.: Simulation of the solvation free-energies for methane, ethane, and propane and corresponding amino-acid dipertides—a critical test of the bond-PMF correction, a new set of hydrocarbon parameters, and the gas-phase water hydrophobicity scale. J. Am. Chem. Soc. 114(17), 6798–6801 (1992) CrossRefGoogle Scholar
  48. Tan, Z., Gubbins, K.E.: Adsorption in carbon micropores at supercritical temperatures. J. Phys. Chem. 94(15), 6061–6069 (1990) CrossRefGoogle Scholar
  49. Tanaka, H., El-Merraoui, M., Kodaira, T., Kaneko, K.: Possibility of quantum effect in micropore filling of Ne on AlPO4-5. Chem. Phys. Lett. 351(5–6), 417–423 (2002) CrossRefGoogle Scholar
  50. Ustinov, E.A.: Modeling of N2 adsorption in MCM-41 materials: hexagonal pores versus cylindrical pores. Langmuir 25(13), 7450–7456 (2009) CrossRefGoogle Scholar
  51. Ustinov, E.A., Do, D.D.: High-pressure adsorption of supercritical gases on activated carbons: an improved approach based on the density functional theory and the bender equation of state. Langmuir 19(20), 8349–8357 (2003) CrossRefGoogle Scholar
  52. Vrabec, J., Stoll, J., Hasse, H.: A set of molecular models for symmetric quadrupolar fluids. J. Phys. Chem. B 105(48), 12126–12133 (2001) CrossRefGoogle Scholar
  53. Wick, C.D., Martin, M.G., Siepmann, J.I.: Transferable potentials for phase equilibria. 4. United-atom description of linear and branched alkenes and alkylbenzenes. J. Phys. Chem. B 104(33), 8008–8016 (2000) CrossRefGoogle Scholar
  54. Zhou, L., Zhou, Y., Bai, S., Yang, B.: Studies on the transition behavior of physical adsorption from the sub- to the supercritical region: experiments on silica gel. J. Colloid Interface Sci. 253(1), 9–15 (2002) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Mus’ab Abdul Razak
    • 1
  • D. D. Do
    • 1
  • Toshihide Horikawa
    • 2
  • Keita Tsuji
    • 3
  • D. Nicholson
    • 1
  1. 1.School of Chemical EngineeringUniversity of QueenslandSt. LuciaAustralia
  2. 2.Department of Advanced Materials, Institute of Technology and ScienceThe University of TokushimaTokushimaJapan
  3. 3.BEL Japan, inc.OsakaJapan

Personalised recommendations