Skip to main content


Log in

CO2 capture from flue gas by two successive VPSA units using 13XAPG

  • Published:
Adsorption Aims and scope Submit manuscript


With the development of novel adsorbent material and adsorption process, adsorption technology has become a potential tool for the CO2 removal from flue gases. The reduction of carbon dioxide emissions from flue gases with two successive vacuum pressure swing adsorption (VPSA) units, using 13XAPG as the adsorbent, was investigated both theoretically and experimentally. A 3-bed 5-step VPSA process was designed to capture CO2 from flue gases, which included feed pressurization, adsorption, rinse, blowdown and counter-current purge. It was found that was difficult to achieve both high CO2 purity and high CO2 recovery by one VPSA unit when capturing CO2 from flue gases at atmospheric pressure. After the verification of one-column VPSA experiment for further concentrating CO2 stream from one VPSA unit to above 95 % purity, two successive VPSA units were designed, composed of 3-bed 5-step cycle for the first unit and 2-bed 6-step cycle for the second unit, and the effects of operating parameters on the separation behaviors were investigated by simulation. With the proposed VPSA process, a CO2 purity of 96.54 % was obtained with recovery of 93.35 %. The total specific power consumption of the two successive VPSA units was \(528.39\mbox{~kJ/kg}_{\mathrm{CO}_{2}}\), while the unit productivity was \(0.031\mbox{~kg}_{\mathrm{CO}_{2}}\mbox{/kg\,h}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others



area-to-volume ratio, 1/m

a i :

number of neighboring sites occupied by a molecule of component i

Bi i :

Biot number of component i, calculated by \(Bi_{i}=\frac{R_{p}k_{fi}}{5\varepsilon_{p}D_{p,i}}\)

\(\overline{C_{i}^{p}}\) :

averaged concentration in the macropores for component i, mol/m3

C :

concentration, mol/m3

C i :

concentration of component i in the gas phase, mol/m3

C p,i :

molar constant pressure specific heat of the gas mixture, J/mol K

C p :

molar constant pressure specific heat of the gas mixture, J/mol K

C pgmass,i :

mass constant pressure specific heat of the pure gas, J/kg K

C pgmass :

mass constant pressure specific heat of the gas mixture, J/kg K

C ps :

constant pressure specific heat of the adsorbent, J/kg K

C pw :

specific heat of the column wall, J/kg K

C v :

molar constant volumetric specific heat of the gas mixture, J/mol K

C vi :

molar constant volumetric specific heat of component i, J/mol K

C v,ads,i :

molar constant volumetric specific heat of component i adsorbed, J/mol K

C t :

total gas concentration, mol/m3

d p :

pellet diameter, m

D ax :

axial dispersion coefficient, m2/s

D p,i :

pore diffusivity of component i, m2/s

D m,i :

molecular diffusivity of component i, m2/s

D k,i :

Knudsen diffusivity of component i, m2/s

D w :

internal diameter of the column, m

D μ,i :

crystal diffusivity of component i, m2/s

\(D_{\mu,i}^{0}\) :

limiting diffusivity at infinite temperatures for component i, m2/s

e :

wall thickness, m

E a,i :

activation energy of microspore diffusion for component i, kJ/mol

h f :

film heat transfer coefficient between the gas and the solid phase, W/m2 K

h w :

film heat transfer coefficient between the gas phase and the column wall, W/m2 K

k fi :

film mass transfer coefficient, m/s

k g :

thermal conductivity of the gas mixture, W/m2 K

k i :

thermal conductivity of component i, W/m2 K

K i :

adsorption equilibrium constant of component i, 1/kPa

\(K_{i}^{0}\) :

adsorption equilibrium constant at the limit T→∞ of component i, 1/kPa

L c :

column length, m

M i :

molecular weight for component i, g/mol

N :

number of the cycle

Nu :

Nusselt number

P :

total pressure, Pa

P atm :

atmospheric pressure, Pa

P cycleend :

pressure at the beginning of pressurization step, Pa

P exit :

purge pressure at the feed end, Pa

P feed :

feed pressure, Pa

P high :

high pressure, Pa

P vacu :

low pressure, Pa


Prandtl number

\(q_{eq0,N_{2}}\) :

adsorbed phase concentration of nitrogen at the initial stage, mol/kg

q i :

adsorbed phase concentration of component i, mol/kg

\(q_{i}^{*}\) :

adsorbed gas-phase concentration in the equilibrium state of component i, mol/kg

\(\overline{q_{i}}\) :

pellet averaged adsorbed phase concentration, mol/kg

\(\langle\overline{q_{i}}\rangle\) :

adsorbed phase concentration of crystals averaged over the entire pellet, mol/kg

q max,i :

saturation capacity of component i, mol/kg

r c :

radius of the crystal, m

r p :

radius of the pore, cm

R c :

radius of the column, m


Reynolds number

r :

radial distance coordinate in the crystal, m

R :

radial distance coordinate in the pellet, m

R p :

radius of the pellet, m

R g :

universal gas constant, J/mol K

R w :

radius of the wall, m

Sc :

Schmidt number

Sh :

Sherwood number

t :

time, s

t feed :

feed step time, s

t press :

pressurization step time, s

t vacu :

vacuum step time, s

t purge :

purge step time, s

t total :

cycle time, s

T :

temperature, K

T feed :

feed temperature, K

T g :

temperature of the gas phase, K

T s :

temperature of the solid phase, K

T w :

wall temperature, K

T :

environment temperature, K

u :

superficial velocity of component i, m/s

U :

global external heat transfer coefficient, W/m2 K

W ads :

weight of adsorbent, kg

y i :

molar fraction of component i

y feed,i :

molar fraction of feed gas for component i

y initial,i :

molar fraction of component i in the initial stage

z :

axial distance along the column, m

α w :

ratio of the internal surface area to the volume of the column wall, 1/m

α wl :

ratio of the logarithmic mean surface area of the column shell to the volume of the column wall, 1/m

γ :

heat capacity ratio, represented by γ=C p /C v

ρ b :

gas density in the bulk, kg/m3

ρ c :

column density, kg/m3

ρ g :

gas density, kg/m3

ρ p :

pellet density, kg/m3

ρ w :

column wall density, kg/m3

λ :

axial heat dispersion, W/m2 K

θ :

parameters for pressure change during depressurization or vacuum

(−ΔH i ):

isosteric heat of adsorption of component i, kJ/mol

ε c :

porosity of the column

ε p :

porosity of the pellet

τ p :

pellet tortuosity

μ g :

gas viscosity, Pa s


  • Aaron, D., Tsouris, C.: Separation of CO2 from flue gas: a review. Sep. Purif. Technol. 40(1), 321–348 (2005)

    CAS  Google Scholar 

  • Agarwal, A., Biegler, L.T., Zitney, S.E.: A superstructure-based optimal synthesis of PSA cycles for post-combustion CO2 capture. AIChE J. 56(7), 1813–1828 (2010)

    Article  CAS  Google Scholar 

  • Audus, H.: Greenhouse gas mitigation technology: an overview of the CO2 capture and sequestration studies and further activities of the IEA greenhouse gas R&D programme. Energy 22(2), 217–221 (1997)

    Article  CAS  Google Scholar 

  • Cho, S.H., Park, J.H., Beum, H.T., Han, S.S., Kim, J.N.: A 2-stage PSA process for the recovery of CO2 from flue gas and its power consumption. Stud. Surf. Sci. Catal. 153, 405–410 (2004)

    Article  CAS  Google Scholar 

  • Chue, K.T., Kim, J.N., Yoo, Y.J., Cho, S.H., Yang, R.T.: Comparison of activated carbon and zeolite 13X for CO2 recovery from flue gas by pressure swing adsorption. Ind. Eng. Chem. Res. 34(2), 591–598 (1995)

    Article  CAS  Google Scholar 

  • Da Silva, F.A.: Cyclic adsorption processes: application to propane/propylene separation. Ph.D. thesis, University of Porto, Porto, Portugal (2003)

  • Diagne, D., Goto, M., Hirose, T.: Experimental study of simultaneous removal and concentration of CO2 by an improved pressure swing adsorption process. Energy Convers. Manag. 36(6), 431–434 (1995)

    Article  CAS  Google Scholar 

  • Gomes, V.G., Yee, K.W.K.: Pressure swing adsorption for carbon dioxide sequestration from exhaust gases. Sep. Purif. Technol. 28(2), 161–171 (2002)

    Article  CAS  Google Scholar 

  • IPCC: Climate Change 2001: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge (2001)

  • Ishibashi, M., Ota, H., Akutsu, N., Umeda, S., Tajika, M., Izumi, J., Yasutake, A., Kabata, T., Kageyama, Y.: Technology for removing carbon dioxide from power plant flue gas by the physical adsorption method. Energy Convers. Manag. 37(6), 929–933 (1996)

    Article  CAS  Google Scholar 

  • Kikkinides, E.S., Yang, R.T., Cho, S.H.: Concentration and recovery of carbon dioxide from flue gas by pressure swing adsorption. Ind. Eng. Chem. Res. 32(11), 2714–2720 (1993)

    Article  CAS  Google Scholar 

  • Ko, D., Siriwardane, R., Biegler, L.T.: Optimization of a pressure-swing adsorption process using zeolite 13X for CO2 sequestration. Ind. Eng. Chem. Res. 42(2), 339–348 (2003)

    Article  CAS  Google Scholar 

  • Liu, Z., Grande, C.A., Li, P., Yu, J.G., Rodrigues, A.E.: Multi-bed vacuum pressure swing adsorption for carbon dioxide capture from flue gas. Sep. Purif. Technol. 81(3), 307–317 (2011)

    Article  CAS  Google Scholar 

  • Merel, J., Clausse, M., Meunier, F.: Experimental investigation on CO2 post combustion capture by indirect thermal swing adsorption using 13X and 5A zeolites. Ind. Eng. Chem. Res. 47(1), 209–215 (2008)

    Article  CAS  Google Scholar 

  • Park, J.-H., Beum, H.-T., Kim, J.-N., Cho, S.-H.: Numerical analysis on the power consumption of the PSA process for recovering CO2 from flue gas. Ind. Eng. Chem. Res. 41(16), 4122–4131 (2002)

    Article  CAS  Google Scholar 

  • Poling, B.E., Prausnitz, J.M., O Connell, J.P.: The Properties of Gases and Liquids, 5th edn. McGraw-Hill, Boston (2001)

    Google Scholar 

  • Reynolds, S.P., Ebner, A.D., Ritter, J.A.: Stripping PSA cycles for CO2 recovery from flue gas at high temperature using a hydrotalcite-like adsorbent. Ind. Eng. Chem. Res. 45(12), 4278–4294 (2006)

    Article  CAS  Google Scholar 

  • Reynolds, S.P., Mehrotra, A., Ebner, A.D., Ritter, J.A.: Heavy reflux PSA cycles for CO2 recovery from flue gas: Part I. Performance evaluation. Adsorption 14(2), 399–413 (2008)

    Article  CAS  Google Scholar 

  • Ruthven, D.M.: Principles of Adsorption and Adsorption Processes. Wiley, New York (1984)

    Google Scholar 

  • Ruthven, D.M., Farooq, S., Knaebel, K.S.: Pressure Swing Adsorption. VCH Publishers, New York (1994)

    Google Scholar 

  • Shen, C., Liu, Z., Li, P., Yu, J.: Two-stage VPSA process for CO2 capture from flue gas using activated carbon beads. Ind. Eng. Chem. Res. 51(13), 5011–5021 (2012)

    Article  CAS  Google Scholar 

  • Sjostrom, S., Krutka, H.: Evaluation of solid sorbents as a retrofit technology for CO2 capture. Fuel 89(6), 1298–1306 (2010)

    Article  CAS  Google Scholar 

  • Takamura, Y., Narita, S., Aoki, J., Hironaka, S., Uchida, S.: Evaluation of dual-bed pressure swing adsorption for CO2 recovery from boiler exhaust gas. Sep. Purif. Technol. 24(3), 519–528 (2001)

    Article  CAS  Google Scholar 

  • Wakao, N., Funazkri, T.: Effect of fluid dispersion coefficients on particle-to-fluid mass transfer coefficients in packed beds. Chem. Eng. Sci. 33, 1375–1384 (1978)

    Article  CAS  Google Scholar 

  • Wang, L., Liu, Z., Li, P., Yu, J.G., Rodrigues, A.E.: Experimental and modeling investigation on post-combustion carbon dioxide capture using zeolite 13X-APG by hybrid VTSA process. Chem. Eng. J. 197, 151–161 (2012)

    Article  CAS  Google Scholar 

  • Wasch, A.P.D., Froment, G.F.: Heat transfer in packed beds. Chem. Eng. Sci. 27(3), 567–576 (1972)

    Article  Google Scholar 

  • Xiao, P., Zhang, J., Webley, P., Li, G., Singh, R., Todd, R.: Capture of CO2 from flue gas streams with zeolite 13X by vacuum-pressure swing adsorption. Adsorption 14(4), 575–582 (2008)

    Article  CAS  Google Scholar 

  • Yang, R.T.: Gas Separation by Adsorption Processes. Butterworths, Boston (1987)

    Google Scholar 

  • Yu, K.M.K., Curcic, I., Gabriel, J., Tsang, S.C.E.: Recent advances in CO2 capture and utilization. ChemSusChem 1(11), 893–899 (2008)

    Article  CAS  Google Scholar 

  • Zhang, J., Webley, P.A.: Cycle development and design for CO2 capture from flue gas by vacuum swing adsorption. Environ. Sci. Technol. 42(2), 563–569 (2008)

    Article  CAS  Google Scholar 

Download references


The authors are grateful for the financial support of china 863 program (Grant No. 2008AA062302).

Author information

Authors and Affiliations


Corresponding author

Correspondence to Ping Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, L., Liu, Z., Li, P. et al. CO2 capture from flue gas by two successive VPSA units using 13XAPG. Adsorption 18, 445–459 (2012).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: