Abstract
Magnetically active, thermally stable, and ordered mesoporous resin (MOMR-200) and carbon (MOMC-200) monoliths were prepared by one-pot hydrothermal synthesis from resol, copolymer surfactant, and iron cations at high-temperature (200 ∘C), followed by calcination at 360 ∘C and carbonization at 600 ∘C. X-ray diffraction results show that both MOMR-200 and MOMC-200 have ordered hexagonal mesoporous symmetry, and N2 isotherms indicate that these samples have uniform mesopores (3.71, 3.45 nm), high surface area (328, 621 m2/g) and large pore volume (0.31, 0.43 cm3/g). Transmission electron microscopy shows that iron nanoparticles, which are superparamagnetic in nature, are dispersed in the network. More importantly, the high temperature (200 ∘C) products exhibit much better stability than the samples synthesized at low temperature (100 ∘C). Interestingly, MOMC-200 has higher adsorption capacity for organic dyes when compared with commercial adsorbents (activated carbon and macroporous resin: XAD-4). Combining the advantages such as magnetically active, thermally stable networks, ordered and open mesopores, high surface area, large pore volume, adsorption of pollutants in water and desorption in ethanol solvent, MOMC-200 is potentially important for water treatments.
This is a preview of subscription content, access via your institution.









References
Bourlinos, A.B., Simopoulos, A., Boukos, N., Petridis, D.: Magnetic modification of the external surfaces in the MCM-41 porous silica: synthesis, characterization, and functionalization. J. Phys. Chem. B 105, 7432–7437 (2001)
Celer, E.B., Jaroniec, M.: Temperature-programmed microwave-assisted synthesis of SBA-15 ordered mesoporous silica. J. Am. Chem. Soc. 128, 14408–14414 (2006)
Corma, A.: From microporous to mesoporous molecular sieve materials and their use in catalysis. Chem. Rev. 97, 2373–2419 (1997)
Fröba, M., Köhn, R., Bouffaud, G.: Fe2O3 nanoparticles within mesoporous MCM-48 silica: in situ formation and characterization. Chem. Mater. 11, 2858–2865 (1999)
Gross, A.F., Diehl, M.R., Beverly, K.C., Richman, E.K., Tolbert, S.H.: Controlling magnetic coupling between cobalt nanoparticles through nanoscale confinement in hexagonal mesoporous silica. J. Phys. Chem. B 107, 5475–5482 (2003)
Han, Y., Li, D.F., Zhao, L., Song, J.W., Yang, X.Y., Li, N., Di, Y., Li, C.J., Wu, S., Xu, X.Z., Meng, X.J., Lin, K.F., Xiao, F.S.: High-temperature generalized synthesis of stable ordered mesoporous silica-based materials by using fluorocarbon-hydrocarbon surfactant mixtures. Angew. Chem. Int. Ed. 42, 3633–3637 (2003)
Kresge, C.T., Leonowicz, M.E., Roth, W.J., Vartuli, J.C., Beck, J.S.: Ordered mesoporous molecular sieves synthesized by a liquid-template mechanism. Nature 359, 710–712 (1992)
Li, D., Han, Y., Song, J.W., Zhao, L., Xu, X.Z., Di, Y., Xiao, F.S.: High-temperature synthesis of stable ordered mesoporous silica materials by using fluorocarbon–hydrocarbon surfactant mixtures. Chem. Eur. J. 10, 5911–5922 (2004)
Liang, C.D., Li, Z.J., Dai, S.: Mesoporous carbon materials synthesis and modification. Angew. Chem. Int. Ed. 47, 3696–3717 (2008)
Liu, F.J., Li, C.J., Ren, L.M., Meng, X.J., Zhang, H., Xiao, F.-S.: High-temperature synthesis of stable and ordered mesoporous polymer monoliths with low dielectric constants. J. Mater. Chem. 19, 7921–7928 (2009)
Lu, A.H., Schmidt, W., Matoussevitch, N., Bǒnnemann, H., Spliethoff, B., Tesche, B., Bill, E., Kiefer, W., Schüth, F.: Nanoengineering of a magnetically separable hydrogenation catalyst. Angew. Chem. Int. Ed. 43, 4303–4306 (2004a)
Lu, A.H., Li, W.C., Kiefer, A., Schmidt, W., Bill, E., Fink, G., Schüth, F.: Fabrication of magnetically separable mesostructured silica with an open pore system. J. Am. Chem. Soc. 126, 8616–8617 (2004b)
Lu, A.H., Salabas, E.L., Schüth, F.: Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew. Chem. Int. Ed. 46, 1222–1224 (2007)
Meng, Y., Gu, D., Zhang, F.Q., Shi, Y.F., Yang, H.F., Li, Z., Yu, C.Z., Tu, B., Zhao, D.Y.: Ordered mesoporous polymers and homologous carbon frameworks amphiphilic surfactant templating and direct transformation. Angew. Chem. Int. Ed. 44, 7053–7059 (2005)
Su, F.B., Zeng, J.H., Bao, X.Y., Yu, Y.S., Lee, J.Y., Zhao, X.S.: Preparation and characterization of highly ordered graphitic mesoporous carbon as a Pt catalyst support for direct methanol fuel cells. Chem. Mater. 17, 3960–3967 (2005)
Sun, Z.H., Wang, L.F., Liu, P.P., Wang, S.C., Sun, B., Jiang, D.Z., Xiao, F.-S.: Magnetically motive porous sphere composite and its excellent properties for the removal of pollutants in water by adsorption and desorption cycles. Adv. Mater. 18, 1968–1971 (2006)
Teunissen, W., Grootde, F.M.F., Geus, J., Stephan, O., Tence, M., Colliex, C.: The structure of carbon encapsulated NiFe nanoparticles. J. Catal. 204, 169–174 (2001)
Vinu, A., Srinivasu, P., Takahashi, M., Mori, T., Balasubramanian, V.V.: Controlling the textural parameters of mesoporous carbon materials. Ariga K. Microporous Mesoporous Mater. 100, 20–26 (2007)
Wan, Y., Zhao, D.Y.: On the controllable soft-templating approach to mesoporous silicates. Chem. Rev. 107, 2821–2860 (2007)
Wang, X.Q., Dai, S.: A simple method to ordered mesoporous carbons containing nickel nanoparticles. Adsorption 15, 138–144 (2009)
Wang, L.F., Lin, K.F., Di, Y., Zhang, D.L., Li, C.J., Yang, Q., Yin, C.Y., Sun, Z.H., Jiang, D.Z., Xiao, F.-S.: High-temperature synthesis of stable ordered mesoporous silica materials using mesoporous carbon as a hard template. Microporous Mesoporous Mater. 86, 81 (2005)
Xiao, N., Wang, L., Zou, Y.C., Wang, C.Y., Ji, Y.Y., Song, J.W., Li, F., Meng, X.J., Xiao, F.S.: High-temperature synthesis of ordered mesoporous silicas from solo hydrocarbon surfactants and understanding of their synthetic mechanisms. J. Mater. Chem. 19, 661–665 (2009)
Yang, P.D., Zhao, D.Y., Margolese, D.I., Chmelka, B.F., Stucky, G.D.: Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks. Nature 396, 152–155 (1998)
Yi, D.K., Lee, S.S., Papaefthymiou, G.C., Ying, J.Y.: Nanoparticle architectures templated by SiO2/Fe2O3 nanocomposites. Chem. Mater. 18, 614–619 (2006)
Zhai, Y.P., Dou, Y.Q., Liu, X.X., Tu, B., Zhao, D.Y.: One-pot synthesis of magnetically separable ordered mesoporous carbon. J. Mater. Chem. 19, 3292–3300 (2009)
Zhang, F.Q., Meng, Y., Gu, D., Yan, Y., Yu, C.Z., Tu, B., Zhao, D.Y.: A facile aqueous route to synthesize highly ordered mesoporous polymers and carbon frameworks with iad bicontinuous cubic structure. J. Am. Chem. Soc. 127, 13508–13509 (2005)
Zhang, L., Qiao, S.Z., Jin, Y.G., Chen, Z.G., Gu, H.C., Lu, G.Q.: Magnetic hollow spheres of periodic mesoporous organosilica and Fe3O4 nanocrystals: fabrication and structure control. Adv. Mater. 20, 805–809 (2008)
Zhao, D.Y., Feng, J.L., Huo, Q.S., Melosh, N., Fredrickson, G.H., Chmelka, B.F., Stucky, G.D.: Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 279, 548–552 (1998a)
Zhao, D.Y., Huo, Q.S., Feng, J.L., Chmelka, B.F., Stucky, G.D.: Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. J. Am. Chem. Soc. 120, 6024–6036 (1998b)
Zhao, W., Gu, J., Zhang, L., Chen, H., Shi, J.: Fabrication of uniform magnetic nanocomposite spheres with a magnetic core/mesoporous silica shell structure. J. Am. Chem. Soc. 127, 8916–8917 (2005)
Acknowledgements
This work is supported by the State Basic Research Project of China (2009CB623507) and National Natural Science Foundation of China (20973079).
Author information
Authors and Affiliations
Corresponding author
Electronic Supplementary Material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Liu, F., Zhang, H., Zhu, L. et al. High-temperature hydrothermal synthesis of magnetically active, ordered mesoporous resin and carbon monoliths with reusable adsorption for organic dye. Adsorption 19, 39–47 (2013). https://doi.org/10.1007/s10450-012-9408-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10450-012-9408-0
Keywords
- High temperature synthesis
- Ordered mesoporous carbon
- Magnetically active
- Adsorption
- Stability