Skip to main content

Advertisement

Log in

Experimental and molecular simulation studies of CO2 adsorption on zeolitic imidazolate frameworks: ZIF-8 and amine-modified ZIF-8

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

ZIF-8 has been rapidly developed as a potential candidate for CO2 capture due to its low density, high surface area, and robust structure. Considering the electron-donating effect of amino functional groups, amino-modification is expected to be an efficient way to improve CO2 adsorption of ZIF-8. In this work, grand canonical Monte Carlo (GCMC) simulation was performed to study the CO2 adsorption isotherm based on ZIF-8, ZIF-8-NH2, and ZIF-8-(NH2)2. ZIF-8 was synthesized and CO2 adsorption isotherms based on ZIF-8 was measured. The experimental surface area, pore volume, and CO2 adsorption isotherm were used to validate the force field. Adsorptive capacity of ZIF-8-NH2, and ZIF-8-(NH2)2 were first estimated. The GCMC simulation results indicated that the order of increasing CO2 capacity of the ZIF-8 in the lower pressure regime is: ZIF-8 < ZIF-8-NH2 < ZIF-8-(NH2)2, and in the high pressure is: ZIF-8 < ZIF-8-(NH2)2 < ZIF-8-NH2. New adsorption sites can be generated with the existence of-NH2 groups. In addition, for non-modified and amino-modified ZIF-8, it was the first time to use density functional theory (DFT) calculations to investigate their CO2 adsorption sites and CO2 binding energies. The present work indicates that appropriate amine-functionalized can directly enhanced CO2 capacity of ZIF-8.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Aaron, D., Tsouris, C.: Separation of CO2 from flue gas: a review. Sep. Sci. Technol. 40(1–3), 321–348 (2005)

    Article  CAS  Google Scholar 

  • Agnihotri, S., Rood, M.J., Rostam-Abadi, M.: Adsorption equilibrium of organic vapors on single-walled carbon nanotubes. Carbon 43(11), 2379–2388 (2005). doi:10.1016/j.carbon.2005.04.020

    Article  CAS  Google Scholar 

  • Ahnfeldt, T., Gunzelmann, D., Loiseau, T., Hirsemann, D., Senker, J., Ferey, G., Stock, N.: Synthesis and modification of a functionalized 3D open-framework structure with MIL-53 topology. Inorg. Chem. 48(7), 3057–3062 (2009)

    Article  CAS  Google Scholar 

  • Arstad, B., Fjellvåg, H., Kongshaug, K., Swang, O., Blom, R.: Amine functionalised metal organic frameworks (MOFs) as adsorbents for carbon dioxide. Adsorption 14(6), 755–762 (2008). doi:10.1007/s10450-008-9137-6

    Article  CAS  Google Scholar 

  • Babarao, R., Jiang, J.: Molecular screening of metal–organic frameworks for CO2 storage. Langmuir 24(12), 6270–6278 (2008). doi:10.1021/la800369s

    Article  CAS  Google Scholar 

  • Babarao, R., Jiang, J.: Unprecedentedly high selective adsorption of gas mixtures in rho zeolite-like metal–organic framework: a molecular simulation study. J. Am. Chem. Soc. 131(32), 11417–11425 (2009). doi:10.1021/ja901061j

    Article  CAS  Google Scholar 

  • Babarao, R., Jiang, J., Sandler, S.I.: Molecular simulations for adsorptive separation of CO2/CH4 mixture in metal-exposed, catenated, and charged metal–organic frameworks. Langmuir 25(9), 5239–5247 (2008). doi:10.1021/la803074g

    Article  Google Scholar 

  • Babarao, R., Tong, Y.H., Jiang, J.W.: Molecular insight into adsorption and diffusion of alkane isomer mixtures in metal-organic frameworks. J. Phys. Chem. B 113(27), 9129–9136 (2009). doi:10.1021/jp902253p

    Article  CAS  Google Scholar 

  • Bae, Y.-S., Mulfort, K.L., Frost, H., Ryan, P., Punnathanam, S., Broadbelt, L.J., Hupp, J.T., Snurr, R.Q.: Separation of CO2 from CH4 using mixed-ligand metal−organic frameworks. Langmuir 24(16), 8592–8598 (2008). doi:10.1021/la800555x

    Article  CAS  Google Scholar 

  • Bai, H., Yeh, A.C.: Removal of CO2 greenhouse gas by ammonia scrubbing. Ind. Eng. Chem. Res. 36(6), 2490–2493 (1997). doi:10.1021/ie960748j

    Article  CAS  Google Scholar 

  • Banerjee, R., Phan, A., Wang, B., Knobler, C., Furukawa, H., O’Keeffe, M., Yaghi, O.M.: High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture. Science 319(5865), 939–943 (2008). doi:10.1126/science.1152516

    Article  CAS  Google Scholar 

  • Banerjee, R., Furukawa, H., Britt, D., Knobler, C., O’Keeffe, M., Yaghi, O.M.: Control of pore size and functionality in isoreticular zeolitic imidazolate frameworks and their carbon dioxide selective capture properties. J. Am. Chem. Soc. 131(11), 3875–3877 (2009). doi:10.1021/ja809459e

    Article  CAS  Google Scholar 

  • Bauer, S., Serre, C., Devic, T., Horcajada, P., Marrot, J., Ferey, G., Stock, N.: High-throughput assisted rationalization of the formation of metal organic frameworks in the iron(III) aminoterephthalate solvothermal system. Inorg. Chem. 47(17) (2008). doi:10.1021/ic800538r

  • Belmabkhout, Y., Serna-Guerrero, R., Sayari, A.: Adsorption of CO2-containing gas mixtures over amine-bearing pore-expanded MCM-41 silica: application for gas purification. Ind. Eng. Chem. Res. 49(1), 359–365 (2010)

    Article  CAS  Google Scholar 

  • Chen, B., Wang, X., Zhang, Q., Xi, X., Cai, J., Qi, H., Shi, S., Wang, J., Yuan, D., Fang, M.: Synthesis and characterization of the interpenetrated MOF-5. J. Mater. Chem. 20(18) (2010). doi:10.1039/B922528E

  • Choi, S., Drese, J.H., Jones, C.W.: Adsorbent materials for carbon dioxide capture from large anthropogenic point sources. ChemSusChem 2(9), 796–854 (2009)

    Article  CAS  Google Scholar 

  • Couck, S., Denayer, J.F.M., Baron, G.V., Remy, T., Gascon, J., Kapteijn, F.: An amine-functionalized MIL-53 metal-organic framework with large separation power for CO2 and CH4. J. Am. Chem. Soc. 131(18), 6326–6327 (2009)

    Article  CAS  Google Scholar 

  • Couck, S., Gobechiya, E., Kirschhock, C.E.A., Serra-Crespo, P., Juan-Alcaniz, J., Joaristi, A.M., Stavitski, E., Gascon, J., Kapteijn, F., Baron, G.V., Denayer, J.F.M.: Adsorption and separation of light gases on an amino-functionalized metal-organic framework: an adsorption and in situ XRD study. ChemSusChem 5(4), 740–750 (2012)

    Article  CAS  Google Scholar 

  • Devic, T., Vimont, A., Greneche, J., Moreau, F., Magnier, E., Filinchuk, Y., Marrot, J., Lavalley, J., Daturi, M., Ferey, G.: Functionalization in flexible porous solids: effects on the pore opening and the host-guest interactions. J. Am. Chem. Soc. 132(3), 1127–1136 (2012)

    Article  Google Scholar 

  • Duren, T., Snurr, R.Q.: Assessment of isoreticular metal-organic frameworks for adsorption separations: a molecular simulation study of methane/n-butane mixtures. J. Phys. Chem. B. 108(40) (2004)

  • Eddaoudi, M., Kim, J., Rosi, N., Vodak, D., Wachter, J., O’Keeffe, M., Yaghi, O.M.: Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 295(18), 469–471 (2002)

    Article  CAS  Google Scholar 

  • Hicks, J.C., Drese, J.H., Fauth, D.J., Gray, M.L., Qi, G.G., Jones, C.W.: Designing adsorbents for CO2 capture from flue gas-hyperbranched aminosilicas capable of capturing CO2 reversibly. J. Am. Chem. Soc. 130(10), 2902–2903 (2008)

    Article  CAS  Google Scholar 

  • Karra, J.R., Walton, K.S.: Molecular simulations and experimental studies of CO2, CO, and N2 adsorption in metal organic frameworks. J. Phys. Chem. C 114(37), 15735–15740 (2010)

    Article  CAS  Google Scholar 

  • Krishna, R., van Baten, J.M.: Comment on comparative molecular simulation study of CO2/N2 and CH4/N2 separation in zeolites and metal–organic frameworks. Langmuir 26(4), 2975–2978 (2009). doi:10.1021/la9041875

    Article  Google Scholar 

  • Liu, D., Zheng, C., Yang, Q., Zhong, C.: Understanding the adsorption and diffusion of carbon dioxide in zeolitic imidazolate frameworks: a molecular simulation study. J. Phys. Chem. C 113(12), 5004–5009 (2009). doi:10.1021/jp809373r

    Article  CAS  Google Scholar 

  • Lu, C., Bai, H., Wu, B., Su, F., Hwang, J.F.: Comparative study of CO2 capture by carbon nanotubes, activated carbons, and zeolites. Energy Fuels 22(5), 3050–3056 (2008). doi:10.1021/ef8000086

    Article  CAS  Google Scholar 

  • Materials Studio: Materials Studio 4.4. v. Accelrys, Inc., San Diego (2009)

  • Morris, W., Leung, B., Furukawa, H., Yaghi, O.K., Hayashi, H., Houndonougbo, Y., Asta, M., Laird, B.B., Yaghi, O.M.: A combined experimental-computational investigation of carbon dioxide capture in a series of isoreticular zeolitic imidazolate frameworks. J. Am. Chem. Soc. 132(32) (2010)

  • Mu, W., Liu, D., Yang, Q., Zhong, C.: Computational study of the effect of organic linkers on natural gas upgrading in metal–organic frameworks. Microporous Mesoporous Mater. 130(1–3), 76–82 (2010). doi:10.1016/j.micromeso.2009.10.015

    Article  CAS  Google Scholar 

  • Mulliken, R.S.: Electronic population analysis on LCAO-MO molecular wave functions. J. Chem. Phys. 23, 1833–1840 (1955)

    Article  CAS  Google Scholar 

  • Myers, A.L.: Adsorption in porous materials at high pressure: theory and experiment. Langmuir 18(26) (2002)

  • Pérez-Pellitero, J., Amrouche, H., Siperstein, F.R., Pirngruber, G., Nieto-Draghi, C., Chaplais, G., Simon-Masseron, A., Bazer-Bachi, D., Peralta, D., Bats, N.: Adsorption of CO2, CH4, and N2 on zeolitic imidazolate frameworks: experiments and simulations. Chem., Eur. J. 16(5), 1560–1571 (2010). doi:10.1002/chem.200902144

    Article  Google Scholar 

  • Park, K.S., Ni, Z., Côté, A.P., Choi, J.Y., Huang, R., Uribe-Romo, F.J., Chae, H.K., O’Keeffe, M., Yaghi, O.M.: Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl. Acad. Sci. USA 103(27), 10186–10191 (2006). doi:10.1073/pnas.0602439103

    Article  CAS  Google Scholar 

  • Perdew, J.P., Wang, Y.: Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 45(23), 13244–13249 (1992)

    Article  Google Scholar 

  • Phan, A., Doonan, C.J., Uribe-Romo, F.J., Knobler, C.B., O’Keeffe, M., Yaghi, O.M.: Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks. Acc. Chem. Res. 43(1), 58–67 (2009). doi:10.1021/ar900116g

    Article  Google Scholar 

  • Rappe, A.K., Casewit, C.J., Colwell, K.S., Goddard, W.A., Skiff, W.M.: UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J. Am. Chem. Soc. 114(25), 10024–10035 (1992). doi:10.1021/ja00051a040

    Article  CAS  Google Scholar 

  • Sayari, A., Belmabkhout, Y., Serna-Guerrero, R.: Flue gas treatment via CO2 adsorption. Chem. Eng. J. 171(3), 760–774 (2011)

    Article  CAS  Google Scholar 

  • Serra-Crespo, P., Ramos-Fernandez, E.V., Gascon, J., Kapteijn, F.: Synthesis and characterization of an amino functionalized MIL-101(Al): separation and catalytic properties. Chem. Mater. 23, 2565–2572 (2011)

    Article  CAS  Google Scholar 

  • Sirjoosingh, A., Alavi, S., Woo, T.K.: Grand-canonical Monte Carlo and molecular-dynamics simulations of carbon-dioxide and carbon-monoxide adsorption in zeolitic imidazolate framework materials. J. Phys. Chem. C 114(5), 2171–2178 (2010). doi:10.1021/jp908058n

    Article  CAS  Google Scholar 

  • Stavitski, E., Pidko, E.A., Couck, S., Remy, T., Hensen, E.J.M., Weckhuysen, B.M., Denayer, J., Gascon, J., Kapteijn, F.: Complexity behind CO2 capture on NH2-MIL-53(Al). Langmuir 27, 3970–3976 (2011)

    Article  CAS  Google Scholar 

  • Su, F., Lu, C., Cnen, W., Bai, H., Hwang, J.F.: Capture of CO2 from flue gas via multiwalled carbon nanotubes. Sci. Total Environ. 407(8), 3017–3023 (2009)

    Article  CAS  Google Scholar 

  • Su, F., Lu, C., Kuo, S.-C., Zeng, W.: Adsorption of CO2 on amine-functionalized Y-type zeolites. Energy Fuels 24(2), 1441–1448 (2010). doi:10.1021/ef901077k

    Article  CAS  Google Scholar 

  • Torrisi, A., Mellot-Draznieks, C., Bell, R.G.: Impact of ligands on CO(2) adsorption in metal-organic frameworks: first principles study of the interaction of CO(2) with functionalized benzenes. II. Effect of polar and acidic substituents. J. Chem. Phys. 132(4) (2010). doi:Artn 044705

  • Tranchemontagne, D.J., Hunt, J.R., Yaghi, O.M.: Room temperature synthesis of metal-organic frameworks: MOF-5, MOF-74, MOF-177, MOF-199, and IRMOF-0. Tetrahedron 64(36), 8553–8557 (2008). doi:10.1016/j.tet.2008.06.036

    Article  CAS  Google Scholar 

  • Tsuzuki, S., Luthi, H.P.: Interaction energies of van der Waals and hydrogen bonded systems calculated using density functional theory: assessing the PW91 model. J. Chem. Phys. 114(9), 3949–3957 (2001)

    Article  CAS  Google Scholar 

  • Vaidhyanathan, R., Iremonger, S.S., Dawson, K.W., Shimizu, G.K.H.: An amine-functionalized metal organic framework for preferential CO2 adsorption at low pressures. Chem. Commun. 35, 5230–5232 (2009)

    Article  Google Scholar 

  • Xu, Q., Liu, D., Yang, Q., Zhong, C., Mi, J.: Li-modified metal-organic frameworks for CO2/CH4 separation: a route to achieving high adsorption selectivity. J. Mater. Chem. 20(4) (2010)

  • Xu, X.C., Song, C.S., Andresen, J.M., Miller, B.G., Scaroni, A.W.: Preparation and characterization of novel CO2 “molecular basket” adsorbents based on polymer modified mesoporous molecular sieve MCM-41. Microporous Mesoporous Mater. 62(1–2), 29–45 (2003)

    Article  CAS  Google Scholar 

  • Xue, C., Zhong, C.: Molecular simulation study of hexane diffusion in dynamic metal-organic frameworks. Chin. J. Chem. 27(3), 472–478 (2009). doi:10.1002/cjoc.200990077

    Article  CAS  Google Scholar 

  • Zhang, L., Wang, Q., Liu, Y.-C.: Design for hydrogen storage materials via observation of adsorption sites by computer tomography. J. Phys. Chem. B 111(17), 4291–4295 (2007). doi:10.1021/jp0713918

    Article  CAS  Google Scholar 

  • Zheng, C., Liu, D., Yang, Q., Zhong, C., Mi, J.: Computational study on the influences of framework charges on CO2 uptake in metal–organic frameworks. Ind. Eng. Chem. Res. 48(23), 10479–10484 (2009). doi:10.1021/ie901000x

    Article  CAS  Google Scholar 

  • Zhou, M., Wang, Q., Zhang, L., Liu, Y.-C., Kang, Y.: Adsorption sites of hydrogen in zeolitic imidazolate frameworks. J. Phys. Chem. B 113(32), 11049–11053 (2009). doi:10.1021/jp904170s

    Article  CAS  Google Scholar 

  • Zukal, A., Mayerova, J., Cejka, J.: Alkali metal cation doped Al-SBA-15 for carbon dioxide adsorption. Phys. Chem. Chem. Phys. 12(20) (2010)

Download references

Acknowledgements

Financial support from the National Natural Science Foundation of China (Nos. 20936001 and 21176084), and Guangdong Natural Science Foundation (S2011030001366) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongxia Xi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, D., Wu, Y., Xia, Q. et al. Experimental and molecular simulation studies of CO2 adsorption on zeolitic imidazolate frameworks: ZIF-8 and amine-modified ZIF-8. Adsorption 19, 25–37 (2013). https://doi.org/10.1007/s10450-012-9407-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-012-9407-1

Keywords

Navigation