Skip to main content
Log in

A dynamic column breakthrough apparatus for adsorption capacity measurements with quantitative uncertainties

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

A dynamic column breakthrough (DCB) apparatus was used to study the separation of CH4+N2 gas mixtures using two zeolites, H+-mordenite and 13X, at temperatures of (229.2 and 301.9) K and pressures to 792.9 kPa. The apparatus is not limited to the study of dilute adsorbates within inert carrier gases because the instrumentation allows the effluent flow rate to be measured accurately: a method for correcting apparent effluent mass flow readings for large changes in effluent composition is described. The mathematical framework used to determine equilibrium adsorption capacities from the dynamic adsorption experiments is presented and includes a method for estimating quantitatively the uncertainties of the measured capacities. Dynamic adsorption experiments were conducted with pure CH4, pure N2 and equimolar CH4+N2 mixtures, and the results were compared with similar static adsorption experiments reported in the literature. The 13X zeolite had the greater adsorption capacity for both CH4 and N2. At 792 kPa the equilibrium capacities of the 13X zeolite increased from 2.13±0.14 mmol g−1 for CH4 and 1.36±0.10 mmol g−1 for N2 at 301.9 K to 3.97±0.19 mmol g−1 for CH4 and 3.33±0.12 mmol g−1 for N2 at 229.2 K. Both zeolites preferentially adsorbed CH4; however, the mordenite had a greater equilibrium selectivity of 3.5±0.4 at 301.9 K. Equilibrium selectivities inferred from pure fluid capacities using the Ideal Adsorbed Solution theory were limited by the accuracy of the literature pure fluid Toth models. Equilibrium capacities with quantitative uncertainties derived directly from DCB measurements without reference to a dynamic model should help increase the accuracy of mass transfer parameters extracted by the regression of such models to time dependent data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Al-Muhtaseb, S.A.: Adsorption and desorption equilibria of nitrogen, methane, ethane, and ethylene on date-pit activated carbon. J. Chem. Eng. Data 55(1), 313–319 (2010)

    Article  CAS  Google Scholar 

  • American Energies Pipeline, LLC: Improve Gas Quality—Nitrogen Rejection Unit (2009). http://www.nitrogenrejectionunit.com/facts.html. Accessed 29/10/2010 2010

  • Assael, M.J., Trusler, J.P.M., Tsolakis, T.F.: Thermophysical Properties OF Fluids: An Introduction to Their Prediction. World Scientific, Singapore (1996)

    Book  Google Scholar 

  • Broom, D.P.: Hydrogen Storage Materials: The Characterisation of Their Storage Properties. Springer, London (2011)

    Google Scholar 

  • Campbell, J.M.: Gas conditioning and processing/by John M. Campbell; With a collaboration on chapter 11 by R.N. Maddox. vol. Accessed from http://nla.gov.au/nla.cat-vn2360714. Campbell Petroleum Series, Norman, Okla. (1974)

  • Casas, N., Schell, J., Pini, R., Mazzotti, M.: Fixed bed adsorption of CO2/H2 mixtures on activated carbon: experiments and modeling. Adsorption (2012)

  • Cavenati, S., Grande, C.A., Rodrigues, A.E.: Adsorption equilibrium of methane, carbon dioxide, and nitrogen on zeolite 13X at high pressures. J. Chem. Eng. Data 49(4), 1095–1101 (2004)

    Article  CAS  Google Scholar 

  • Delgado, J.A., Uguina, M.A., Gomez, J.M., Ortega, L.: Adsorption equilibrium of carbon dioxide, methane and nitrogen onto Na- and H-mordenite at high pressures. Sep. Purif. Technol. 48(3), 223–228 (2006a)

    Article  CAS  Google Scholar 

  • Delgado, J.A., Uguina, M.A., Sotelo, J.L., Ruiz, B.: Modelling of the fixed-bed adsorption of methane/nitrogen mixtures on silicalite pellets. Sep. Purif. Technol. 50(2), 192–203 (2006b)

    Article  CAS  Google Scholar 

  • Do, D.D.: Adsorption Analysis: Equilibria and Kinetics. Imperial College Press, London (1998)

    Book  Google Scholar 

  • Farooq, S., Ruthven, D.M.: Heat effects in adsorption column dynamics. 2. Experimental validation of the one-dimensional model. Ind. Eng. Chem. Res. 29(6), 1084–1090 (1990)

    Article  CAS  Google Scholar 

  • Grande, C.A., Silva, V., Gigola, C., Rodrigues, A.E.: Adsorption of propane and propylene onto carbon molecular sieve. Carbon 41(13), 2533–2545 (2003)

    Article  CAS  Google Scholar 

  • Gu, Y., Lodge, T.P.: Synthesis and gas separation performance of triblock copolymer ion gels with a polymerized ionic liquid mid-block. Macromolecules 44(7), 1732–1736 (2011)

    Article  CAS  Google Scholar 

  • Guntuka, S., Farooq, S., Rajendran, A.: A- and B-site substituted lanthanum cobaltite perovskite as high temperature oxygen sorbent. 2. Column dynamics study. Ind. Eng. Chem. Res. 47(1), 163–170 (2008)

    Article  CAS  Google Scholar 

  • Habgood, H.W.: The kinetics of molecular sieve action—sorption of nitrogen-methane mixtures by linde molecular sieve 4A. Can. J. Chem.-Rev. Can. Chim. 36(10), 1384–1397 (1958)

    Article  CAS  Google Scholar 

  • Hofman, P.S.: Dynamic mixture measurements of commercial adsorbents for evaluating N2+CH4 separations by pressure swing adsorption for liquified natural gas production. PhD Thesis, The University of Western Australia (2012)

  • Jensen, N.K., Rufford, T.E., Watson, G., Zhang, D.K., Chan, K.I., May, E.F.: Screening of several zeolites for gas separation applications involving methane, nitrogen, and carbon dioxide. J. Chem. Eng. Data 57(1), 106–113 (2012)

    Article  CAS  Google Scholar 

  • Karger, J., Ruthven, D.M.: Diffusion in Zeolites and Other Microporous Solids. Wiley, New York (1992)

    Google Scholar 

  • Keller, J.U., Staudt, R.: Gas Adsorption Equilibria: Experimental Methods and Adsorptive Isotherms. Springer, Boston (2010)

    Google Scholar 

  • Kidnay, A.J., Parrish, W.R.: Fundamentals of Natural Gas Processing. CRC Press, Boca Raton (2006)

    Google Scholar 

  • Kunz, O., Klimeck, R., Wagner, W., Jaeschke, M.: The GERG-2004 Wide-Range Reference Equation of State for Natural Gases and Other Mixtures. GERG Technical Monograph. In. Fortschr.-Ber. VDI, VDI-Verlag, Düsseldorf (Germany) (2006)

  • Kuznicki, S.M., Bell, V.A., Nair, S., Hillhouse, H.W., Jacubinas, R.M., Braunbarth, C.M., Toby, B.H., Tsapatsis, M.: A titanosilicate molecular sieve with adjustable pores for size-selective adsorption of molecules. Nature 412(6848), 720–724 (2001)

    Article  CAS  Google Scholar 

  • LabVIEW. In. National Instruments (2007)

  • Lemmon, E.W., Huber, M.L., McLinden, M.O.: REFPROP—reference fluid thermodynamic and transport properties. NIST Standard Reference Database 23. In. (2007)

  • Lopes, F.V.S., Grande, C.A., Rodrigues, A.E.: Activated carbon for hydrogen purification by pressure swing adsorption: Multicomponent breakthrough curves and PSA performance. Chem. Eng. Sci. 66(3), 303–317 (2011)

    Article  CAS  Google Scholar 

  • Malbrunot, P., Vidal, D., Vermesse, J., Chahine, R., Bose, T.K.: Adsorbent helium density measurement and its effect on adsorption isotherms at high pressure. Langmuir 13, 539–544 (1997)

    Article  CAS  Google Scholar 

  • Malek, A., Farooq, S.: Determination of equilibrium isotherms using dynamic column breakthrough and constant flow equilibrium desorption. J. Chem. Eng. Data 41(1), 25–32 (1996)

    Article  CAS  Google Scholar 

  • Mitariten, M.: Nitrogen removal from natural gas with the molecular gate adsorption process. Paper presented at the Gas Processors Association (2009)

  • Mulgundmath, V.P., Jones, R.A., Tezel, F.H., Thibault, J.: Fixed bed adsorption for the removal of carbon dioxide from nitrogen: Breakthrough behavior and modelling for heat and mass transfer. Sep. Purif. Technol. 85, 17–27 (2012)

    Article  CAS  Google Scholar 

  • Myers, A.L., Prausnitz, J.M.: Thermodynamics of mixed-gas adsorption. AIChE J. 11, 121–127 (1965)

    Article  CAS  Google Scholar 

  • Rajendran, A., Kariwala, V., Farooq, S.: Correction procedures for extra-column effects in dynamic column breakthrough experiments. Chem. Eng. Sci. 63(10), 2696–2706 (2008)

    Article  CAS  Google Scholar 

  • Ross, S., Olivier, J.P.: On Physical Adsorption. Interscience, New York (1964)

    Google Scholar 

  • Rouquerol, F., Rouquerol, J., Sing, K.: Adsorption by Powders and Porous Solids: Principles, Methodology and Applications. Academic Press, New York (1999)

    Google Scholar 

  • Ruthven, D.M.: Principles of Adsorption and Adsorption Processes. Wiley, New York (1984)

    Google Scholar 

  • Ruthven, D.M.: Molecular sieve separations. Chem. Ing. Tech. 83(1–2), 44–52 (2011)

    Article  CAS  Google Scholar 

  • Saha, D., Bao, Z., Jia, F., Deng, S.: Adsorption of CO2, CH4, N2O, and N2 on MOF-5, MOF-177, and zeolite 5A. Environ. Sci. Technol. 44(5), 1820–1826 (2010)

    Article  CAS  Google Scholar 

  • Sep-Pro Systems Inc.: Nitrogen Rejection Units (2009). http://www.sepprosystems.com/Nitrogen_Rejection_Units.html

  • Simo, M., Brown, C.J., Hlavacek, V.: Simulation of pressure swing adsorption in fuel ethanol production process. Comput. Chem. Eng. 32(7), 1635–1649 (2008)

    Article  CAS  Google Scholar 

  • Sircar, S.: Pressure swing adsorption. Ind. Eng. Chem. Res. 41(6), 1389–1392 (2002)

    Article  CAS  Google Scholar 

  • Sircar, S.: Basic research needs for design of adsorptive gas separation processes. Ind. Eng. Chem. Res. 45(16), 5435–5448 (2006)

    Article  CAS  Google Scholar 

  • Sircar, S.: Recent developments in macroscopic measurement of multicomponent gas adsorption equilibria, kinetics, and heats. Ind. Eng. Chem. Res. 46(10), 2917–2927 (2007)

    Article  CAS  Google Scholar 

  • Sudibandriyo, M., Pan, Z., Fitzgerald, J.E., Robinson, R.L., Gasem, K.A.M.: Adsorption of methane, nitrogen, carbon dioxide, and their binary mixtures on dry activated carbon at 318.2 K and pressures up to 13.6 MPa. Langmuir 19(13), 5323–5331 (2003)

    Article  CAS  Google Scholar 

  • Tezel, F.H., Tezel, H.O., Ruthven, D.M.: Determination of pure and binary isotherms for nitrogen and krypton. J. Colloid Interface Sci. 149(1), 197–207 (1992)

    Article  CAS  Google Scholar 

  • Tucker Gas Processing Equipment Inc.: Nitrogen Rejection (2011). http://www.tuckergas.com/nrupg03.htm

  • Valenzuela, D.P., Myers, A.L.: Adsorption Equilibrium Data Handbook. Prentice Hall Advanced Reference Series. Prentice Hall, Englewood Cliffs (1989)

    Google Scholar 

  • Warmuzinski, K., Tanczyk, M.: Multicomponent pressure swing adsorption. 1. Modelling of large-scale PSA installations. Chem. Eng. Process. 36(2), 89–99 (1997)

    Article  CAS  Google Scholar 

  • Watson, G.C., Jensen, N.K., Rufford, T.E., Chan, K.I., May, E.F.: Volumetric adsorption measurements of N2, CO2, CH4, and a CO2+CH4 mixture on a natural chabazite from 5 to 3000 kPa. J. Chem. Eng. Data 57(1), 93–101 (2012)

    Article  CAS  Google Scholar 

  • Won, W., Lee, S., Lee, K.-S.: Modeling and parameter estimation for a fixed-bed adsorption process for CO2 capture using zeolite 13X. Sep. Purif. Technol. 85, 120–129 (2012)

    Article  CAS  Google Scholar 

  • Yang, R.T.: Gas Separation by Adsorption Processes. Butterworths, Boston (1987)

    Google Scholar 

  • Young, D.M., Crowell, A.D.: Physical Adsorption of Gases. Butterworths, London (1962)

    Google Scholar 

Download references

Acknowledgements

The research was funded by Chevron Energy Technology Company, the Western Australian Energy Research Alliance and the Australian Research Council (Project LP0776928). One of us (PSH) also received scholarships from the Australia China Natural Gas Partnership Fund and the Australian Petroleum Production and Exploration Association. We thank Craig Grimm for helping to construct the apparatus as well as Guillaume Watson, Brendan Graham and Thomas Saleman for their contributions to the research, and Mike Johns and Brent Young for carefully reading the manuscript. We are grateful to TOSOH Corporation and Shanghai MLC for supplying the zeolites studied in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric F. May.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hofman, P.S., Rufford, T.E., Chan, K.I. et al. A dynamic column breakthrough apparatus for adsorption capacity measurements with quantitative uncertainties. Adsorption 18, 251–263 (2012). https://doi.org/10.1007/s10450-012-9398-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-012-9398-y

Keywords

Navigation