Advertisement

Adsorption

, Volume 17, Issue 2, pp 403–410 | Cite as

Determination of the energetic topography of bivariate heterogeneous surfaces from adsorption isotherms

  • P. M. Centres
  • F. Bulnes
  • G. Zgrablich
  • A. J. Ramirez-PastorEmail author
Article

Abstract

The reversible adsorption process occurring on patchwise heterogeneous bivariate surfaces is studied by Monte Carlo simulation and mean-field approximation. These surfaces are characterized by a collection of deep and shallow adsorbing patches with a typical length scale l. Patches can be either arranged in a deterministic chessboard structure or in a random way. Previous studies showed that the topography of a given surface can be obtained from the knowledge of the corresponding adsorption isotherm and a reference curve. In the present work, we discuss the advantages and disadvantages of using different reference curves. One of the main consequences of this analysis is to provide an improved method for the determination of the energetic topography of the surface from adsorption measurements.

Keywords

Lattice-gas models Adsorption thermodynamics Heterogeneous surfaces Monte Carlo simulations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bulnes, F., Ramirez-Pastor, A.J., Zgrablich, G.: Scaling behavior in adsorption on bivariate surfaces and the determination of energetic topography. J. Chem. Phys. 115, 1513–1522 (2001) CrossRefGoogle Scholar
  2. Bulnes, F., Ramirez-Pastor, A.J., Zgrablich, G.: Scaling laws in adsorption on bivariate surfaces. Phys. Rev. E 65, 031603–031609 (2002) CrossRefGoogle Scholar
  3. Bulnes, F., Ramirez-Pastor, A.J., Zgrablich, G.: Scaling behavior of adsorption on patchwise bivariate surfaces revisited. Langmuir 23, 1264–1269 (2007) CrossRefGoogle Scholar
  4. Danner, R.P., Wenzel, L.A.: Adsorption of carbon monoxide-nitrogen, carbon monoxide-oxygen, and oxygen-nitrogen mixtures on synthetic zeolites. AIChE J. 15, 515–520 (1969) CrossRefGoogle Scholar
  5. Hill, T.L.: An Introduction to Statistical Thermodynamics. Addison Wesley, New York (1960) Google Scholar
  6. House, W.A.: In: Everett, D.H. (ed.) Specialist Periodical Reports: Colloid Science, vol. 4, pp. 1–58. Royal Chem. Soc., London (1983) Google Scholar
  7. Huang, Y.Y.: The temperature dependence of isosteric heat of adsorption on the heterogeneous surface. J. Catal. 25, 131–138 (1972) CrossRefGoogle Scholar
  8. Jaroniec, M., Braüer, P.: Some questions of the heterogeneity of mixed adsorbents. Surf. Sci. Rep. 6, 65–68 (1986) CrossRefGoogle Scholar
  9. Jaroniec, M., Madey, R.: Physical Adsorption on Heterogeneous Solids. Elsevier, Amsterdam (1988) Google Scholar
  10. Keller, J., Staudt, R.: Gas Adsorption Equilibria: Experimental Methods and Adsorption Isotherms. Springer, Boston (2005) Google Scholar
  11. Koubek, J., Pasek, J., Volf, J.: The isosteric heat of adsorption on heterogeneous surfaces. J. Colloid Interface Sci. 51, 491–498 (1975) CrossRefGoogle Scholar
  12. Mamleev, V.Sh., Bekturov, E.A.: Improved method for analysis of energetic heterogeneity of surfaces from adsorption isotherms. Langmuir 12, 441–449 (1996a) CrossRefGoogle Scholar
  13. Mamleev, V.Sh., Bekturov, E.A.: Numerical method for analysis of surface heterogeneity in a case of finite diversity of adsorption sites. Langmuir 12, 3630–3642 (1996b) CrossRefGoogle Scholar
  14. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equation of state calculations by fast computing machines. J. Chem. Phys. 21, 1087–1093 (1953) CrossRefGoogle Scholar
  15. Miller, G.W., Knaebel, K.S., Ikels, K.G.: Equilibria of nitrogen, oxygen, argon, and air in molecular sieve 5A. AIChE J. 33, 194–201 (1987) CrossRefGoogle Scholar
  16. Nicholson, D., Parsonage, N.G.: Computer Simulation and the Statistical Mechanics of Adsorption. Academic Press, London (1982) Google Scholar
  17. Ramirez-Pastor, A.J., Nazzarro, M.S., Riccardo, J.L., Zgrablich, G.: Dimer physisorption on heterogeneous substrates. Surf. Sci. 341, 249–261 (1995) CrossRefGoogle Scholar
  18. Ramirez-Pastor, A.J., Riccardo, J.L., Pereyra, V.: Adsorption of linear k-mers on heterogeneous surfaces with simple topographies. Langmuir 16, 682–689 (2000) CrossRefGoogle Scholar
  19. Riccardo, J.L., Chade, M., Pereyra, V., Zgrablich, G.: Adsorption and surface diffusion on generalized heterogeneous surfaces. Langmuir 8, 1518–1531 (1992) CrossRefGoogle Scholar
  20. Riccardo, J.L., Pereyra, V., Zgrablich, G., Rojas, F., Mayagoitia, V., Kornhauser, I.: Characterization of energetic surface heterogeneity by a dual site-bond model. Langmuir 9, 2730–2736 (1993) CrossRefGoogle Scholar
  21. Ripa, P., Zgrablich, G.: Effect of the potential correlation function on the physical adsorption on heterogeneous substrates. J. Phys. Chem. 79, 2118–2122 (1975) CrossRefGoogle Scholar
  22. Romá, F., Bulnes, F., Ramirez-Pastor, A.J., Zgrablich, G.: Temperature dependence of scaling laws in adsorption on bivariate surfaces. Phys. Chem. Chem. Phys. 5, 3694–3699 (2003) CrossRefGoogle Scholar
  23. Ross, S., Olivier, J.P.: On Physical Adsorption. Interscience, New York (1964) Google Scholar
  24. Rudzinski, W., Everett, D.H.: Adsorption of Gases on Heterogeneous Surfaces. Academic Press, London (1992) Google Scholar
  25. Rudzinski, W., Steele, W.A., Zgrablich, G. (eds.): Equilibria and Dynamics of Gas Adsorption on Heterogeneous Solid Surfaces. Elsevier, Amsterdam (1997) Google Scholar
  26. Sircar, S., Myers, A.L.: Equilibrium adsorption of gases and liquids on heterogeneous adsorbents—a practical viewpoint. Surf. Sci. 205, 353–386 (1988) CrossRefGoogle Scholar
  27. Steele, W.A.: The Interaction of Gases with Solid Surfaces. Pergamon, Oxford (1974) Google Scholar
  28. Tóth, J.: Adsorption: Theory, Modeling, and Analysis. Dekker, New York (2002) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • P. M. Centres
    • 1
  • F. Bulnes
    • 1
  • G. Zgrablich
    • 1
  • A. J. Ramirez-Pastor
    • 1
    Email author
  1. 1.Departamento de Física, Instituto de Física AplicadaUniversidad Nacional de San Luis-CONICETSan LuisArgentina

Personalised recommendations