Skip to main content
Log in

Modeling gas separation in metal-organic frameworks

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

The gas adsorption and CO2 separation properties of 9 different metal-organic frameworks (MOFs) have been modelled with grand canonical Monte Carlo (GCMC) adsorption simulations. Adsorption of both pure gases and gas mixtures has been studied. MOFs are shown to have high selectivity for polar gases such as CO2 over non-polar gases such as N2. Selectivity of one polar gas from another can be altered by changing the polarity of the framework, pore geometry and also temperature. Often features that lead to good selectivity of CO2 from N2 also lead to poor selectivity of CO2 from H2O.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aaron, D., Tsouris, C.: Separation of CO2 from flue gas: a review. Sep. Sci. Technol. 40, 321–348 (2005)

    Article  CAS  Google Scholar 

  • Babarao, R., Jiang, J.: Molecular screening of metal organic frameworks for CO2 storage. Langmuir 24, 6270–6278 (2008)

    Article  CAS  Google Scholar 

  • Babarao, R., Jiang, J.: Unprecedentedly high selective adsorption of gas mixtures in rho zeolite-like metal-organic framework: a molecular simulation study. J. Am. Chem. Soc. 131, 11417–11425 (2009)

    Article  CAS  Google Scholar 

  • Babarao, R., Jiang, J., Sandler, S.I.: Molecular simulations for adsorptive separation of CO2/CH4 mixture in metal-exposed, catenated, and charged metal organic frameworks. Langmuir 25, 5239–5247 (2009)

    Article  CAS  Google Scholar 

  • Bae, Y.-S., Mulfort, K.L., Frost, H., Ryan, P., Punnathanam, S., Broadbelt, L.J., Hupp, J.T., Snurr, R.Q.: Separation of CO2 from CH4 using mixed-ligand metal organic frameworks. Langmuir 24, 8592–8598 (2008)

    Article  CAS  Google Scholar 

  • Banerjee, R., Phan, A., Wang, B., Knobler, C., Furukawa, H., O’Keeffe, M., Yaghi, O.M.: High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture. Science 319, 939–943 (2008)

    Article  CAS  Google Scholar 

  • Barthelet, K., Marrot, J., Riou, D., Férey, G.: A breathing hybrid organic-inorganic solid with very large pores and high magnetic characteristics. Angew. Chem. Int. Ed. 41, 281–284 (2002)

    Article  CAS  Google Scholar 

  • Chae, H.K., Siberio-Perez, D.Y., Kim, J., Go, Y., Eddaoudi, M., Matzger, A.J., O’Keeffe, M., Yaghi, O.M.: A route to high surface area, porosity and inclusion of large molecules in crystals. Nature 427, 523–527 (2004)

    Article  CAS  Google Scholar 

  • Chen, H., Sholl, D.S.: Examining the accuracy of ideal adsorbed solution theory without curve-fitting using transition matrix Monte Carlo simulations. Langmuir 23, 6431–6437 (2007)

    Article  CAS  Google Scholar 

  • Cheng, Y., Kondo, A., Noguchi, H., Kajiro, H., Urita, K., Ohba, T., Kaneko, K., Kanoh, H.: Reversible structural change of Cu-MOF on exposure to water and its CO2 adsorptivity. Langmuir 25, 4510–4513 (2009)

    Article  CAS  Google Scholar 

  • Chui, S.S.Y., Lo, S.M.F., Charmant, J.P.H., Orpen, A.G., Williams, I.D.: A chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3] n . Science 283, 1148–1150 (1999)

    Article  CAS  Google Scholar 

  • Dybtsev, D.N., Chun, H., Kim, K.: Rigid and flexible: a highly porous metal-organic framework with unusual guest-dependent dynamic behavior. Angew. Chem. Int. Ed. 43, 5033–5036 (2004)

    Article  CAS  Google Scholar 

  • Fennell, C.J., Gezelter, J.D.: Is the Ewald summation still necessary? Pairwise alternatives to the accepted standard for long-range electrostatics. J. Chem. Phys. 124, 234104-12 (2006)

    Article  Google Scholar 

  • Frenkel, D., Smit, B.: Monte Carlo simulations. In: Understanding Molecular Simulation, pp. 23–61. Academic Press, San Diego (2002a)

    Chapter  Google Scholar 

  • Frenkel, D., Smit, B.: Monte Carlo simulations in various ensembles. In: Understanding Molecular Simulation, pp. 111–137. Academic Press, San Diego (2002b)

    Chapter  Google Scholar 

  • Greathouse, J.A., Allendorf, M.D.: The interaction of water with MOF-5 simulated by molecular dynamics. J. Am. Chem. Soc. 128, 10678–10679 (2006)

    Article  CAS  Google Scholar 

  • Jose, M.S., Emilio, A., Julian, D.G., Alberto, G., Javier, J., Pablo, O., Daniel, S.-P.: The SIESTA method for ab initio order-N materials simulation. J. Phys. Condens. Matter. 2745 (2002)

  • Keskin, S., Liu, J., Rankin, R.B., Johnson, J.K., Sholl, D.S.: Progress, opportunities, and challenges for applying atomically detailed modeling to molecular adsorption and transport in metal organic framework materials. Ind. Eng. Chem. Res. 48, 2355–2371 (2009)

    Article  CAS  Google Scholar 

  • Klontzas, E., Tylianakis, E., Froudakis, G.E.: Designing 3D COFs with enhanced hydrogen storage capacity. Nano Lett. 10, 452–454 (2010)

    Article  CAS  Google Scholar 

  • Konduru, N., Lindner, P., Assaf-Anid, N.M.: Curbing the greenhouse effect by carbon dioxide adsorption with zeolite 13X. AIChE J. 53, 3137–3143 (2007)

    Article  CAS  Google Scholar 

  • Li, H., Eddaoudi, M., O’Keeffe, M., Yaghi, O.M.: Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 402, 276–279 (1999)

    Article  CAS  Google Scholar 

  • Li, J.-R., Kuppler, R.J., Zhou, H.-C.: Selective gas adsorption and separation in metal-organic frameworks. Chem. Soc. Rev. 38, 1477–1504 (2009)

    Article  CAS  Google Scholar 

  • Li, Y., Yang, R.T.: Gas adsorption and storage in metal-organic framework MOF-177. Langmuir 23, 12937–12944 (2007)

    Article  CAS  Google Scholar 

  • Liang, Z., Marshall, M., Chaffee, A.L.: CO2 adsorption-based separation by metal organic framework (Cu-BTC) versus zeolite (13X). Energy Fuels 23, 2785–2789 (2009)

    Article  CAS  Google Scholar 

  • Liu, B., Smit, B.: Comparative molecular simulation study of CO2/N2 and CH4/N2 separation in zeolites and metal organic frameworks. Langmuir 25, 5918–5926 (2009a)

    Article  CAS  Google Scholar 

  • Liu, D., Zheng, C., Yang, Q., Zhong, C.: Understanding the adsorption and diffusion of carbon dioxide in zeolitic imidazolate frameworks: a molecular simulation study. J. Phys. Chem. C 113, 5004–5009 (2009b)

    Article  CAS  Google Scholar 

  • Martin-Calvo, A., Garcia-Perez, E., Castillo, J.M., Calero, S.: Molecular simulations for adsorption and separation of natural gas in IRMOF-1 and Cu-BTC metal-organic frameworks. Phys. Chem. Chem. Phys. 10, 7085–7091 (2008)

    Article  CAS  Google Scholar 

  • Mayo, S.L., Olafson, B.D., Goddard, W.A.: DREIDING: a generic force field for molecular simulations. J. Phys. Chem. 94, 8897–8909 (2002)

    Article  Google Scholar 

  • Miller, S.R., Wright, P.A., Devic, T., Serre, C., Férey, G., Llewellyn, P.L., Denoyel, R., Gaberova, L., Filinchuk, Y.: Single crystal X-ray diffraction studies of carbon dioxide and fuel-related gases adsorbed on the small pore scandium terephthalate metal organic framework, Sc2(O2CC6H4CO2)3. Langmuir 25, 3618–3626 (2009)

    Article  CAS  Google Scholar 

  • Millward, A.R., Yaghi, O.M.: Metal organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature. J. Am. Chem. Soc. 127, 17998–17999 (2005)

    Article  CAS  Google Scholar 

  • Morton, A.: First climate refugees start move to new island home. The Age (2009)

  • Myers, A.L., Monson, P.A.: Adsorption in porous materials at high pressure:  theory and experiment. Langmuir 18, 10261–10273 (2002)

    Article  CAS  Google Scholar 

  • NIST: Computational chemistry comparison and benchmark database. http://srdata.nist.gov/cccbdb (2006). Accessed 13th May 2010

  • Peng, D.-Y., Robinson, D.B.: A new two-constant equation of state. Ind. Eng. Chem. Fundam. 15, 59–64 (1976)

    Article  CAS  Google Scholar 

  • Potoff, J.J., Siepmann, J.I.: Vapor-liquid equilibria of mixtures containing alkanes, carbon dioxide, and nitrogen. AIChE J. 47, 1676–1682 (2001)

    Article  CAS  Google Scholar 

  • Ramsahye, N., Maurin, G., Bourrelly, S., Llewellyn, P., Devic, T., Serre, C., Loiseau, T., Ferey, G.: Adsorption of CO2 in metal organic frameworks of different metal centres: grand canonical Monte Carlo simulations compared to experiments. Adsorption 13, 461–467 (2007a)

    Article  CAS  Google Scholar 

  • Ramsahye, N.A., Maurin, G., Bourrelly, S., Llewellyn, P.L., Loiseau, T., Serre, C., Ferey, G.: On the breathing effect of a metal-organic framework upon CO2 adsorption: Monte Carlo compared to microcalorimetry experiments. Chem. Commun. 3261–3263 (2007b) (Cambridge, UK)

  • Rappe, A.K., Casewit, C.J., Colwell, K.S., Goddard, W.A., Skiff, W.M.: UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J. Am. Chem. Soc. 114, 10024–10035 (2002)

    Article  Google Scholar 

  • Rosseinsky, M.J.: Recent developments in metal-organic framework chemistry: design, discovery, permanent porosity and flexibility. Microporous Mesoporous Mater. 73, 15–30 (2004)

    Article  CAS  Google Scholar 

  • Sun, H.: COMPASS: an ab initio force-field optimized for condensed-phase applications overview with details on alkane and benzene compounds. J. Phys. Chem. B 102, 7338–7364 (1998)

    Article  CAS  Google Scholar 

  • Wax, E.: In flood-prone Bangladesh, a future that floats. The Washington Post (2007)

  • Wells, B., Chaffee, A.: Advances in simulating gas adsorption in metal-organic and covalent-organic frameworks for the rational design of selective CO2 adsorbing materials (in preparation)

  • Wells, B.A., Liang, Z., Marshall, M., Chaffee, A.L.: Modeling gas adsorption in metal organic frameworks. Energy Procedia 1, 1273–1280 (2009)

    Article  CAS  Google Scholar 

  • Yaghi, O.M., O’Keeffe, M., Ockwig, N.W., Chae, H.K., Eddaoudi, M., Kim, J.: Reticular synthesis and the design of new materials. Nature 423, 705–714 (2003)

    Article  CAS  Google Scholar 

  • Yang, Q., Zhong, C.: Molecular simulation of carbon dioxide/methane/hydrogen mixture adsorption in metal organic frameworks. J. Phys. Chem. B 110, 17776–17783 (2006a)

    Article  CAS  Google Scholar 

  • Yang, Q., Xue, C., Zhong, C., Chen, J.-F.: Molecular simulation of separation of CO2 from flue gases in Cu-BTC metal-organic framework. AIChE J. 53, 2832–2840 (2007)

    Article  CAS  Google Scholar 

  • Yang, Q., Zhong, C., Chen, J.-F.: Computational study of CO2 storage in metal organic frameworks. J. Phys. Chem. C 112, 1562–1569 (2008)

    Article  CAS  Google Scholar 

  • Yazaydin, A.O., Benin, A.I., Faheem, S.A., Jakubczak, P., Low, J.J., Willis, R.R., Snurr, R.Q.: Enhanced CO2 adsorption in metal-organic frameworks via occupation of open-metal sites by coordinated water molecules. Chem. Mater. 21, 1425–1430 (2009)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan L. Chaffee.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supporting Information—Modelling Details (docx 24.2 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wells, B.A., Chaffee, A.L. Modeling gas separation in metal-organic frameworks. Adsorption 17, 255–264 (2011). https://doi.org/10.1007/s10450-010-9305-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-010-9305-3

Keywords

Navigation