Skip to main content

Adsorption of CO2 and N2 on synthesized NaY zeolite at high temperatures

Abstract

NaY zeolite particles with a high surface area of 723 m2/g were synthesized by a hydrothermal method. Adsorption isotherms of pure gases CO2 and N2 on the synthesized NaY particles were measured at temperatures 303, 323, 348, 373, 398, 423, 448 and 473 K and pressures up to 100 kPa. It was found that the adsorption isotherm of CO2 on the synthesized zeolite is higher than that on other porous media reported in the literature. All measured adsorption isotherms of CO2 and N2 were fitted to adsorption models Sips, Toth, and UNILAN in the measured temperature/pressure range and Henry’s law adsorption equilibrium constants were obtained for all three adsorption models. The adsorption isotherms measured in this work suggest that the NaY zeolite may be capable of capturing CO2 from flue gas at high temperatures. In addition, isosteric heats of adsorption were calculated from these adsorption isotherms. It was found that temperature has little effect on N2 adsorption, while it presents marked decrease for CO2 with an increase of adsorbate loading, which suggests heterogeneous interactions between CO2 and the zeolite cavity.

This is a preview of subscription content, access via your institution.

Abbreviations

b :

Parameters for Sips model, kPa−1

c :

Parameters for UNILAN model, kPa

DQ :

Standard deviation, %

k :

Number of experimental data

K :

Parameters for Toth model, kPa−1

m :

Parameters for Toth model

n :

The magnitudes of moles adsorbed, mol/kg

n cal :

Adsorbed values calculated from models, mol/kg

n exp :

Adsorbed values from experiment, mol/kg

n s :

Parameter for adsorption models, mol/kg

N :

Adsorbate loading, mol/kg

P :

Pressure at equilibrium state, kPa

q :

Parameters for Sips model

Q st :

Isosteric heat of adsorption, J/mol

R :

Gas constant, 8.314, J/mol/K

s :

Parameter for UNILAN model

T :

Temperature, K

Δn :

Average percentage of deviation, %

References

  • Abanades, J.C., Rubin, E.S., Anthony, E.J.: Sorbent cost and performance in CO2 capture system. Ind. Eng. Chem. Res. 43, 3462–3466 (2004)

    Article  CAS  Google Scholar 

  • Adams, D., Davison, J.: Capturing CO2. IEA Greebhous Gas R&D Programme (2007)

  • Birol, F., Argiri, M.: World energy prospects to 2020. Energy 24, 905–918 (1999)

    Article  CAS  Google Scholar 

  • Chakraborty, A., Saha, B.B.S., Ng, K.C.: On the thermodynamic modeling of the isosteric heat of adsorption and comparison with experiments. Appl. Phys. Lett. 89, 171901 (2006)

    Article  Google Scholar 

  • Chakraborty, A., Saha, B.B., El-Sharkawy, I.I., Koyama, S., Srinivasan, K., Ng, K.C.: Theory and experimental validation on isosteric heat of adsorption for an adsorbent + adsorbate system. High Temp. High Press. 37, 109–117 (2008)

    CAS  Google Scholar 

  • Chou, C.T., Chen, C.Y.: Carbon dioxide recovery by vacuum swing adsorption. Sep. Purif. Technol. 39, 51–65 (2004)

    Article  CAS  Google Scholar 

  • Do, D.D.: Adsorption Analysis. Imperial College Press, London (1998)

    Google Scholar 

  • Dunne, A.J., Rao, M., Sircar, S., Gorte, R.J., Myers, A.L.: Calorimetric heats of adsorption and adsorption isotherms. 1. O2, N2, Ar, CO2, CH4, C2H6, and SF6 on silicalite. Langmuir 12, 5888–5895 (1996)

    Article  CAS  Google Scholar 

  • Epstein, P.R., Rogers, C.: Inside the greenhouse: the impacts of CO2 and climate change on public health in the inner city. Harvard Medical School (2004)

  • Florin, N.H., Harris, A.T.: Screening CaO-based sorbents for CO2 capture in biomass gasifiers. Energy Fuels 22, 2734–2742 (2008)

    Article  CAS  Google Scholar 

  • Freundlich, H.: The Elements of Colloidal Chemistry. Dutton, New York (1921), pp. 58–61

    Google Scholar 

  • Gao, W., Butler, D., Tomasko, D.L.: High-pressure adsorption of CO2 on NaY zeolite and model prediction of adsorption isotherms. Langmuir 20, 8083–8089 (2004)

    Article  CAS  Google Scholar 

  • Gu, X., Dong, J., Nenoff, T.M.: Synthesis of defect-free FAU-type zeolite membranes and separation for dry and moist CO2/N2 mixture. Ind. Eng. Chem. Res. 44, 937–944 (2005)

    Article  CAS  Google Scholar 

  • Harlick, P.J.E., Tezel, F.H.: An experimental adsorbent screening study for CO2 removal from N2. Microporous Mesoporous Mater. 76, 71–79 (2004)

    Article  CAS  Google Scholar 

  • Hill, T.L.: Statistical mechanics of adsorption. V. thermodynamics and heat of adsorption. J. Chem. Phys. 17, 520–535 (1949)

    Article  CAS  Google Scholar 

  • Jaramillo, E., Chandross, M.: Adsorption of small molecules in LTA zeolites. 1. NH3, CO2, and H2O in zeolite 4A. J. Phys. Chem. B 108, 20155–20159 (2004)

    Article  CAS  Google Scholar 

  • Khelifa, A., Benchehida, L., Derriche, Z.: Adsorption of carbon dioxide by X zeolites exchanged with Ni2+ and Cr3+: isotherms and isosteric heat. J. Colloid Interface Sci. 278, 9–17 (2004)

    Article  CAS  Google Scholar 

  • Kusakabe, K., Kuroda, T., Murata, A., Morooka, S.: Formation of a Y-Type Zeolite Membrane on a porous a-alumina tube for gas separation. Ind. Eng. Chem. Res. 36, 649–655 (1997)

    Article  CAS  Google Scholar 

  • Lee, J.S., Kim, J.H., Kim, J.T., Suh, J.K., Lee, J.M., Lee, C.H.: Adsorption equilibria of CO2 on zeolite 13X and zeolite X/activated carbon composite. J. Chem. Eng. Data 47, 1237–1242 (2002)

    Article  CAS  Google Scholar 

  • Li, G., Xiao, P., Webley, P., Zhang, J., Singh, R., Marshall, M.: Capture of CO2 from high humidity flue gas by vacuum swing adsorption with zeolite 13X. Adsorption 14, 415–422 (2008)

    Article  CAS  Google Scholar 

  • Li, J., Qiu, J., Sun, Y., Long, Y.: Studies on natural STI zeolite: modification, structure, adsorption and catalysis. Microporous Mesoporous Mater. 37, 365–378 (2000)

    Article  CAS  Google Scholar 

  • Li, P., Tezel, F.H.: Adsorption separation of N2, O2, CO2 and CH4 gases by β-zeolite. Microporous Mesoporous Mater. 98, 94–101 (2007)

    Article  CAS  Google Scholar 

  • Liu, Y., Zhang, L., Watanasiri, S.: Representing vapor-liquid equilibrium for an aqueous MEA-CO2 system using the electrolyte nonrandom-two-liquid model. Ind. Eng. Chem. Res. 38, 2080–2090 (1999)

    Article  CAS  Google Scholar 

  • Maurin, G., Llewellyn, P.L., Bell, R.G.: Adsorption mechanism of carbon dioxide in faujasites: Grand Canonical Monte Carlo simulations and microcalorimetry measurements. J. Phys. Chem. B 109, 16084–16091 (2005)

    Article  CAS  Google Scholar 

  • Meier, W.M., Olson, D.H.: Atlas of Zeolite Structures, 5th edn. Elsevier, Amsterdam (2001)

    Google Scholar 

  • Othman, M.R., Rasid, N.M., Fernando, W.J.N.: Mg–Al hydrotalcite coating on zeolites for improved carbon dioxide adsorption. Chem. Eng. Sci. 61, 1555–1560 (2006)

    Article  CAS  Google Scholar 

  • Paul, A.W., Clyde, O.: Analytical methods in fine particle technology. Micromeritics Instrument Corporation, Norcross, pp. 73–93 (1997)

  • Plant, D.F., Maurin, G., Jobic, H., Llewellyn, P.L.: Molecular dynamics simulation of the cation motion upon adsorption of CO2 in faujasite zeolite systems. J. Phys. Chem. B 110, 14372–14378 (2006)

    Article  CAS  Google Scholar 

  • Plant, D.F., Maurin, G., Deroche, I., Llewellyn, P.L.: Investigation of CO2 adsorption in Faujasite systems: Grand Canonical Monte Carlo and molecular dynamics simulations based on a new derived Na+–CO2 force field. Microporous Mesoporous Mater. 99, 70–78 (2007)

    Article  CAS  Google Scholar 

  • Reichle, D., Kane, B., Houghton, J., Ekmann, J., Benson, S., Ogden, J., Clarke, J., Palmisano, A., Dahlman, R., Socolow, R., Hendrey, G., Stringer, J., Herzog, H., Surles, T., Hunter-Cevera, J., Wolsky, A., Jacobs, G., Woodward, N., Judkins, R., York, M.: Carbon sequestration research and development. Office of Science, Office of Fossil Energy, US Department of Energy Report, http://www.fossil.energy.gov/programs/sequestration/publications/1999_rdreport/index.html (1999)

  • Sebastian, V., Kumakiri, I., Bredesen, R., Menendez, M.: Zeolite membrane for CO2 removal: Operating at high pressure. J. Membr. Sci. 292, 92–97 (2007)

    Article  CAS  Google Scholar 

  • Sircar, S.: Heat of adsorption on heterogeneous adsorbents. Appl. Surf. Sci. 252, 647–653 (2005)

    Article  CAS  Google Scholar 

  • Sircar, S., Mohr, R., Ristic, C., Rao, M.B.: Isosteric heat of adsorption: Theory and experiment. J. Phys. Chem. B 103, 6539–6546 (1999)

    Article  CAS  Google Scholar 

  • Siriwardane, R.V., Shen, M.S., Fisher, E.P.: Adsorption of CO2, N2, and O2 on natural zeolites. Energy Fuels 17, 571–576 (2003)

    Article  CAS  Google Scholar 

  • Toth, J.: In: Myers, A., Belfort, G. (eds.) Fundamentals of Adsorption, pp. 657–665. Engineering Foundation, New York (1984)

    Google Scholar 

  • Walton, K.S., Abney, M.B., LeVan, M.D.: CO2 adsorption in Y and X zeolites modified by alkali metal cation exchange. Microporous Mesoporous Mater. 91, 78–84 (2006)

    Article  CAS  Google Scholar 

  • Yong, Z., Mata, V., Rodrigues, A.E.: Adsorption of carbon dioxide at high temperature—a review. Sep. Purif. Technol. 26, 195–205 (2002)

    Article  CAS  Google Scholar 

  • Zheng, Y., Gu, T.: Modified van der Waals Equation for the prediction of multicomponent isotherms. J. Colloid Interface Sci. 206, 457–463 (1998)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luzheng Zhang.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Shao, W., Zhang, L., Li, L. et al. Adsorption of CO2 and N2 on synthesized NaY zeolite at high temperatures. Adsorption 15, 497–505 (2009). https://doi.org/10.1007/s10450-009-9200-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-009-9200-y