Skip to main content
Log in

Adsorptive separation in the enhancement of butene dehydrogenation

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

Fixed-bed columns containing solid catalysts and adsorbents were employed for simultaneous reaction and separation. The models developed for butene dehydrogenation reaction were validated with experimental data. The model was then employed for variable bed configurations with and without the effect of pressure and vacuum swing reaction (PSR and VSR). The models for the mass and momentum transfer in the catalyst bed and adsorber were solved using orthogonal collocation within the method of lines. The reactor/separator performances were tested for beds with varying numbers of layers of catalysts and adsorbents arranged sequentially. The reaction columns behaved as reactor/separators in series. As the number of layers increased, a homogeneous distribution of the catalyst and adsorbent was approached in the limit. These configurations with variable catalyst/adsorbent distributions were investigated in terms of product purity, selectivity, conversion, recovery and yield. Improved reactor performance was observed with pressure and vacuum swing separation systems and in particular with close to well-mixed reactor/separator configurations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

b :

langmuir adsorption coefficient, kg/mol

C :

gas phase concentration, mol/cm3

D z :

axial dispersion coefficient, m2/s

G :

purge to feed ratio

K :

mass transfer coefficient, s−1

L :

bed length, m

L C,k :

length of kth catalyst layer

L A,k :

length of kth adsorbent layer

Nc :

number of components

P :

pressure, atm

Pe :

Peclet number \(=\frac{ul}{D_{z}}\)

q :

concentration in the adsorbed phase, mol/kg

r rxn :

rate of reaction, mol/s.kg

t :

time, s

u :

inlet gas velocity

\(\overline{v}\) :

dimensionless interstitial fluid velocity \(=\frac{v}{u}\)

x CA :

catalyst/adsorbent volume ratio

x i :

dimensionless solid-phase mole fraction \(=\frac{\overline{q}_{i}}{q_{s}}\)

y :

gas mole fraction

z :

variable for bed axial distance

α i :

dimensionless mass transfer coefficient \(=\frac{k_{i}L}{u}\)

ε :

bed voidage

ρ :

density, kg/m3

υ i :

stoichiometric coefficient of component i

τ :

dimensionless time \(=\frac{tu}{L}\)

ξ:

mass capacity factor \(=\rho_{ads}(\frac{1-\varepsilon}{\varepsilon})(\frac{q_{is}}{c_{0}})\)

Ads,A :

adsorbent

Cat,C :

catalyst

feed :

feed stream

i :

denotes gas species

B d :

butadiene

B :

1-butene

H2 :

hydrogen

H :

high pressure

L :

low pressure

s :

saturation

* :

equilibrium condition

References

  • Acharya, D.R., Hughes, R.: Modeling of 1-butene dehydrogenation in a fixed bed reactor—bed and pellet profiles. Can. J. Chem. Eng. 68, 89–96 (1990)

    Article  CAS  Google Scholar 

  • Aida, T., Silveston, P.L.: Cyclic Separating Reactors. Blackwell Publishing, Oxford (2005)

    Book  Google Scholar 

  • Antonucci, P., Giordano, N., Bart, J.C.J.: Chemical reactions in chromatographic columns. Dehydrogenation of ethane over cadmium-exchanged zeolite 4A. J. Chromatography 150, 309–317 (1978)

    Article  CAS  Google Scholar 

  • Armor, J.N.: Applications of catalytic inorganic membrane reactors to refinery products. J. Membr. Sci. 147, 217–233 (1998)

    Article  CAS  Google Scholar 

  • Brito, A., Arvelo, R., Villarroel, R., Garcia, M.T.: Deactivation of a fixed bed Cr2O3/Al2O3 catalyst during butene-1 dehydrogenation, II. Model predictions. React. Kinet. Catal. Lett. 55, 85–91 (1995)

    Article  CAS  Google Scholar 

  • Carvill, B.T., Hufton, J.R., Anand, M., Sircar, S.: Sorption-enhanced reaction process. AIChE J. 42, 2765–2772 (1996)

    Article  CAS  Google Scholar 

  • Ding, Y., Alpay, E.: Adsorption-enhanced steam-methane reforming. Chem. Eng. Sci. 55, 3929–3940 (2000)

    Article  CAS  Google Scholar 

  • Dumez, F.J., Froment, G.F.: Dehydrogenation of 1-butene into butadiene. Kinetics, catalyst coking, and reactor design. Ind. Eng. Chem. Process. Des. Dev. 15, 291–301 (1976)

    Article  CAS  Google Scholar 

  • Edwards, M.F., Richardson, J.F.: Gas dispersion in packed beds. Chem. Eng. Sci. 23, 109–123 (1968)

    Article  CAS  Google Scholar 

  • Gomes, V.G.: Enhanced reactor performance with pressure and vacuum swing reaction. Int. J. Chem. React. Eng. 2, A19 (2004)

    Google Scholar 

  • Gomes, V.G.: Reactive separation. Ency Chem. Process. 2541–2558 (2005)

  • Gomes, V.G., Fuller, O.M.: Fixed-bed adsorber dynamics in binary physisorption-diffusion. Can. J. Chem. Eng. 72, 622–630 (1994)

    Article  CAS  Google Scholar 

  • Gomes, V.G., Fuller, O.M.: Dynamics of propene metathesis: Physisorption and diffusion in heterogeneous catalysis. AIChE J. 42, 204–213 (1996)

    Article  CAS  Google Scholar 

  • Gomes, V.G., Yee, K.W.K.: A periodic separating reactor for propene metathesis. Chem. Eng. Sci. 57, 3839–3850 (2002)

    Article  CAS  Google Scholar 

  • Hufton, J.R., Mayorga, S., Sircar, S.: Sorption-enhanced reaction process for hydrogen production. AIChE J. 45, 248–256 (1999)

    Article  CAS  Google Scholar 

  • Krishna, R.: Reactive separations: more ways to skin a cat. Chem. Eng. Sci. 57, 1491–1504 (2002)

    Article  CAS  Google Scholar 

  • Lu, Z.P., Rodrigues, A.E.: Simulation of pressure swing adsorption reactors. In: CHEMPOR’93, International Chem. Eng. Conf, Porto, Portugal, Apr. 4–6 (1993)

  • Lu, Z.P., Rodrigues, A.E.: Pressure swing adsorption reactors: simulation of three-step one-bed process. AIChE J. 40, 1118–1137 (1994)

    Article  CAS  Google Scholar 

  • Malek, A., Farooq, S.: Study of a six-bed pressure swing adsorption process. AIChE J. 43, 2509–2523 (1997)

    Article  CAS  Google Scholar 

  • Rawadieh, S., Gomes, V.G.: Catalyst-adsorbent configurations in enhancing adsorptive reactor performance. Int. J. Chem. React. Eng. 5, A108 (2007)

    Google Scholar 

  • Reid, R.C., Prausnitz, J.M., Poling, B.E.: The Properties of Gases and Liquids. New York, McGraw-Hill (1987)

    Google Scholar 

  • Ruthven, D.M., Farooq, S., Knaebel, K.S.: Pressure Swing Adsorption. New York, VCH (1994)

    Google Scholar 

  • Schweich, D., Villermaux, J.: Model for catalytic dehydrogenation of cyclohexane in a chromatographic reactor: comparison of theory and experiment. Ind. Eng. Chem. Fundam. 21, 47–51 (1982)

    Article  CAS  Google Scholar 

  • Sereno, C., Rodrigues, A.: Can steady-state momentum equations be used in modelling pressurization of adsorption beds? Gas Sep. Purif. 7, 167–174 (1993)

    Article  CAS  Google Scholar 

  • Sheikh, J., Kershenbaum, L.S., Alpay, E.: 1-butene dehydrogenation in rapid pressure swing reaction processes. Chem. Eng. Sci. 56, 1511–1516 (2001)

    Article  CAS  Google Scholar 

  • Stankiewicz, A.: Reactive separations for process intensification: an industrial perspective. Chem. Eng. Process. 42, 137–144 (2003)

    Article  CAS  Google Scholar 

  • Stankiewicz, A.I., Moulijn, J.A.: Process intensification: transforming chemical engineering. Chem. Eng. Prog. 96, 22–34 (2000)

    CAS  Google Scholar 

  • Ullmann, F.: Ullmann’s Encyclopedia of Industrial Chemistry, 7th ed. New York, Wiley (2007)

    Google Scholar 

  • Vaporciyan, G.G., Kadlec, R.H.: Equilibrium-limited periodic separating reactors. AIChE J. 33, 1334–1343 (1987)

    Article  CAS  Google Scholar 

  • William, A., Kulprathipanja, S.: Reactive separation processes. In: Kulprathipanja, S. (ed.) Reactive Separation Processes. Taylor & Francis, New York (2002)

    Google Scholar 

  • Xiu, G.-h., Li, P., Rodrigues, A.E.: Sorption-enhanced reaction process with reactive regeneration. Chem. Eng. Sci. 57, 3893–3908 (2002a)

    Article  CAS  Google Scholar 

  • Xiu, G.-h., Soares, J.L., Li, P., Rodrigues, A.E.: Simulation of five-step one-bed sorption-enhanced reaction process. AIChE J. 48, 2817–2832 (2002b)

    Article  CAS  Google Scholar 

  • Yongsunthon, I., Alpay, E.: Conversion-temperature trajectories for well-mixed adsorptive reactors. Chem. Eng. Sci. 53, 691–696 (1998a)

    Article  CAS  Google Scholar 

  • Yongsunthon, I., Alpay, E.: Design and optimisation of temperature cycled adsorptive reactors. Comput. Chem. Eng. 22, S733–S736 (1998b)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent G. Gomes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rawadieh, S., Gomes, V.G. Adsorptive separation in the enhancement of butene dehydrogenation. Adsorption 15, 365–380 (2009). https://doi.org/10.1007/s10450-009-9187-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-009-9187-4

Keywords

Navigation