Skip to main content
Log in

Zeta potential and surface free energy changes of solid-supported phospholipid (DPPC) layers caused by the enzyme phospholipase A2 (PLA2)

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

Stability and wetting properties changes of systems formed of phospholipid DPPC (1,2-dipalmitoyl-sn-glycero-3-phosphocholine) layers covering silica particles or glass slides due to the phospholipase A2 (PLA2) action were determined by zeta potential measurements and the surface free energy evaluation, respectively. The comparison of the zeta potential and surface free energy, which was evaluated from advancing and receding contact angles via applying models of interfacial interactions, i.e. van Oss et al. (LWAB) and contact angle hysteresis (CAH), was found to be helpful for better understanding the mechanism of PLA2 action on the lipid layers, what is discussed in the paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Blodgett, K.B., Langmuir, I.: Built-up films of barium stearate and their optical properties. Phys. Rev. 51, 964–982 (1937)

    Article  CAS  Google Scholar 

  • Chibowski, E.: Surface free energy of a solid from contact angle hysteresis. Adv. Colloid Interface Sci. 103, 149–172 (2003)

    Article  CAS  Google Scholar 

  • Chibowski, E.: Surface free energy and wettability of silyl layers on silicon determined from contact angle hysteresis. Adv. Colloid Interface Sci. 113, 121–133 (2005)

    Article  CAS  Google Scholar 

  • Chibowski, E.: On some relations between advancing, receding and Young’s contact angles. Adv. Colloid Interface Sci. 133, 51–59 (2007)

    Article  CAS  Google Scholar 

  • Chibowski, E., Holysz, L., Jurak, M.: Effect of a lipolytic enzyme on wettability and topography of phospholipid layers deposited on solid support. Colloids Surf. A: Physicochem. Eng. Asp. 321, 131–136 (2008)

    Article  CAS  Google Scholar 

  • Dennis, E.A.: Phospholipases. In: Dennis, E.A. (ed.) The Enzymes, pp. 307–353. Academic Press, New York (1983)

    Google Scholar 

  • Grandbois, M., Clausen-Schaumann, H., Gaub, H.: Atomic force microscope imaging of phospholipid bilayer degradation by phospholipase A2. Biophys. J. 74, 2398–2404 (1998)

    Article  CAS  Google Scholar 

  • Heurtault, B., Saulnier, P., Pech, B., Proust, J.E., Benoit, J.P.: Physico-chemical stability of colloidal lipid particles. Biomaterials 24, 4283–4300 (2003)

    Article  CAS  Google Scholar 

  • Jørgensen, K., Davidsen, J., Mouritsen, O.G.: Biophysical mechanisms of phospholipase A2 action and their use in liposome-based drug delivery. FEBS Lett. 531, 23–27 (2002)

    Article  Google Scholar 

  • Langmuir, I., Schaefer, V.J.: Activities of urease and pepsin monolayers. J. Am. Chem. Soc. 57, 1007 (1938)

    Google Scholar 

  • Moura, S.P., Carmona-Ribeiro, A.M.: Biomimetic particles: optimization of phospholipid bilayer coverage on silica and colloid stabilization. Langmuir 21, 10160–10164 (2005)

    Article  CAS  Google Scholar 

  • Mouritsen, O.G., Andresen, T.L., Halperin, A., Hansen, P.L., Jakobsen, A.F., Jensen, U.B., Jensen, M.Ø., Jørgensen, K., Kaasgaard, T., Leidy, C., Simonsen, A.C., Peters, G.H., Weiss, M.: Activation of interfacial enzymes at membrane surfaces. J. Phys.: Condens. Matter 18, 1293–1304 (2006)

    Article  CAS  Google Scholar 

  • Nielsen, L.K., Risbo, J., Callisen, T.H., Bjørnholm, T.: Lag-burst kinetics in phospholipase A2 hydrolysis of DPPC bilayers visualized by atomic force microscopy. Biochim. Biophys. Acta 1420, 266–271 (1999)

    Article  CAS  Google Scholar 

  • Preočanin, T., Kallay, N.: Point of zero charge and surface charge density of TiO2 in aqueous electrolyte solution as obtained by potentiometric mass titration. Croat. Chem. Acta 79, 95–106 (2006)

    Google Scholar 

  • Rapuano, R., Carmona-Ribeiro, A.M.: Physical adsorption of bilayer membranes on silica. J. Colloid Interface Sci. 193, 104–111 (1997)

    Article  CAS  Google Scholar 

  • Satoh, K.: Determination of binding constants of Ca2+, Na+, and Cl ions to liposomal membrane of dipalmitoylphosphatidylcholine at gel phase by particle electrophoresis. Biochim. Biophys. Acta 1239, 239–248 (1995)

    Article  Google Scholar 

  • Troutier, A.L., Ladavière, C.: An overview of lipid membrane supported by colloidal particles. Adv. Colloid Interface Sci. 133, 1–21 (2007)

    Article  CAS  Google Scholar 

  • van Oss, C.J., Chaudhury, M.K., Good, R.J.: Interfacial Lifshitz-van der Waals and polar interactions in macroscopic systems. Chem. Rev. 88, 927–941 (1988)

    Article  Google Scholar 

  • Verheij, H.M., Volwerk, J.J., Jansen, E.H., Puyk, W.C., Dijkstra, B.W., Drenth, J., de Haas, G.H.: Methylation of histidine-48 in pancreatic phospholipase A2. Role of histidine and calcium ion in the catalytic mechanism. Biochemistry 19, 743–750 (1980)

    Article  CAS  Google Scholar 

  • Wacklin, H.P., Tiberg, F., Fragneto, G., Thomas, R.K.: Distribution of reaction products in phospholipase A2 hydrolysis. Biochim. Biophys. Acta 1768, 1036–1049 (2007)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emil Chibowski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jurak, M., Chibowski, E. Zeta potential and surface free energy changes of solid-supported phospholipid (DPPC) layers caused by the enzyme phospholipase A2 (PLA2). Adsorption 15, 211–219 (2009). https://doi.org/10.1007/s10450-009-9172-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-009-9172-y

Keywords

Navigation