Abstract
Three different porous metal organic framework (MOF) materials have been prepared with and without uncoordinated amine functionalities inside the pores. The materials have been characterized and tested as adsorbents for carbon dioxide. At 298 K the materials adsorb significant amount of carbon dioxide, the amine functionalised adsorbents having the highest CO2 adsorption capacities, the best adsorbing around 14 wt% CO2 at 1.0 atm CO2 pressure. At 25 atm CO2 pressure, up to 60 wt% CO2 can be adsorbed. At high pressures the CO2 uptake is mostly dependent on the available surface area and pore volume of the material in question. For one of the iso-structural MOF pairs the introduction of amine functionality increases the differential adsorption enthalpy (from isosteric method) from 30 to around 50 kJ/mole at low CO2 pressures, while the adsorption enthalpies reach the same level at increase pressures. The high pressure experimental results indicate that MOF based solid adsorbents can have a potential for use in pressure swing adsorption of carbon dioxide at elevated pressures.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Arstad, B., Blom, R., Swang, O.: CO2 absorption in aqueous solutions of alkanolamines: mechanistic insight from quantum chemical calculations. J. Phys. Chem. A 111, 1222–1228 (2007)
Barthelet, K., Marrot, J., Ferey, G., Riou, D.: V-III(OH){O2C-C6H4-CO2}⋅(HO2C-C6H4-CO2H)x(DMF)y(H2O) z (or MIL-68), a new vanadocarboxylate with a large pore hybrid topology: reticular synthesis with infinite inorganic building blocks? Chem. Commun. 520 (2004)
Batten, S.R., Robson, R.: Interpenetrating nets: ordered, periodic entanglement. Angew. Chem. Int. Ed. 37, 1460 (1998)
Beck, J.S., Vartuli, J.C., Roth, W.J., Leonowicz, M.E., Kresge, C.T., Schmitt, K.D., Chu, C.T.W., Olson, D.H., Sheppard, E.W., McCullen, S.B., Higgins, J.B., Schlenker, J.L.: A mew family of mesoporous molecular-sieves prepared with liquid-crystal templates. J. Am. Chem. Soc. 114, 10834 (1992)
Blom, R., Heyn, R.H., Swang, O., Fjellvåg, H., Kongshaug, K.O., Birkeland Nielsen, R.K.: Hydrogen storage in porous coordination polymers. Chem. Eng. Trans. 4, 325 (2004)
Bourrelly, S., Liewellyn, P.L., Serre, C., Millange, F., Loiseau, T., Ferey, G.: Different behaviours of methane and carbon dioxide in the isotypic nanoporous metal terephthalates MIL-53 and MIL-47. J. Am. Chem. Soc. 127, 13519 (2005)
Chae, H.K., Siberio-Perez, D.Y., Kim, J., Og, Y.B., Eddaoudi, M., Matzger, A.J., O’Keeffe, M., Yaghi, O.M.: A route to high surface area, porosity and inclusion of large molecules in crystals. Nature 427, 523 (2004)
Chang, A.C.C., Chuang, S.S.C., Gray, M.C.M., Soong, Y.: In-situ infrared study of CO2 adsorption on SBA-15 grafted with γ-(aminopropyl)triethoxysilane. Energy Fuels 17, 468 (2003)
Dai, L.X.: Chiral metal-organic assemblies—A new approach to immobilizing homogeneous asymmetric catalysts. Angew. Chem. Int. Ed. (Highlights) 43, 5726 (2004)
Delaney, S.W., Knowles, G.P., Chaffee, A.L.: Hybrid Mesoporous materials for carbon dioxide separation. Fuel Chem Div. Preprints 47, 65 (2002)
Dybtsev, D.N.: Rigid and flexible: A highly porous metal-organic framework with unusual guest-dependent dynamic behavior. Angew. Chem. Int. Ed. 43, 5033 (2004)
Fletcher, A.J., Thomas, K.M., Rosseinsky, M.J.: Flexibility in metal-organic framework materials: impact on sorption properties. J. Solid State Chem. 178, 2491 (2005)
Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery, J.A. Jr., Vreven, T., Kudin, K.N., Burant, J.C., Millam, J.M., Iyengar, S.S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G.A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J.E., Hratchian, H.P., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Ayala, P.Y., Morokuma, K., Voth, G.A., Salvador, P., Dannenberg, J.J., Zakrzewski, V.G., Dapprich, S., Daniels, A.D., Strain, M.C., Farkas, O., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Ortiz, J.V., Cui, Q., Baboul, A.G., Clifford, S., Cioslowski, J., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R.L., Fox, D.J., Keith, T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Challacombe, M., Gill, P.M.W., Johnson, B., Chen, W., Wong, M.W., Gonzalez, C., Pople, J.A.: Gaussian 03, Revision B0.4. Gaussian, Wallingford (2004)
Gómez-Lor, B., Gutiérrez-Puebla, E., Iglesias, M., Monge, M.A., Ruiz-Valero, C., Snejko, N.: Novel 2D and 3D indium metal-organic frameworks: Topology and catalytic properties. Chem. Mater. 17, 2568 (2005)
Hagrman, P.J., Hagrman, D., Zubieta, J.: Organic-inorganic hybrid materials: from “simple” coordination polymers to organodiamine-templated molybdenum oxides. Angew. Chem. Int. Ed. 38, 2638 (1999)
Harlick, P.J.E., Sayari, A.: Applications of pore-expanded mesoporous silicas. 3. Triamine silane grafting for enhanced CO2 adsorption. Ind. Eng. Chem. Res. 45, 3248 (2006)
Harlick, P.J.E., Tezel, F.H.: An experimental adsorbent screening study for CO2 removal from N2. Micropor. Mesopor. Mater. 76, 71 (2004)
Hiyoshi, N., Yogo, K., Yashima, T.: Adsorption of carbon dioxide on aminosilane-modified mesoporous silica. J. Jpn. Petrol. Inst. 48, 29 (2005)
Huang, H.Y., Yang, R.T., Chinn, D., Munson, C.L.: Amine-grafted MCM-48 and silica xerogel as superior sorbents for acidic gas removal from natural gas. Ind. Eng. Chem. Res. 42, 2427 (2003)
James, S.L.: Metal-organic frameworks. Chem. Soc. Rev. 32, 276 (2003)
Khatri, R.A., Chuang, S.S.C., Soong, Y.: Gray, M.C.M.: Carbon dioxide capture by diamine-grafted SBA-15: A combined Fourier transform infrared and mass spectrometry study. Ind. Eng. Chem. Res. 44, 3702 (2005)
Kim, S.J.I., Guliants, V., Lin, J.Y.S.: Tailoring pore properties of MCM-48 silica for selective adsorption of CO2. J. Phys. Chem. B 109, 6287 (2005)
Kitagawa, S., Kitaura, R., Noro, S.-I.: Functional porous coordination polymers. Angew. Chem. Int. Ed. 43, 2334 (2004)
Knowles, G.P., Graham, J.V., Delaney, S.W., Chaffee, A.L.: Aminopropyl-functionalized mesoporous silicas as CO2 adsorbents. Fuel Proc. Tech. 86, 1435 (2005a)
Knowles, G.P., Delaney, S.W., Chaffee, A.L.: Amine-functionalised mesoporous silicas as CO2 adsorbents. Stud. Surf. Sci. Catal. 156, 887 (2005b)
Kongshaug, K.O., Fjellvåg, H.: University of Oslo, unpublished results (2008)
Kresge, C.T., Leonowicz, M.E., Roth, W.J., Vartuli, J.C., Beck, J.S.: Ordered mesoporous molecular-sieves synthesized by a liquid-crystal template mechanism. Nature 359, 710 (1992)
Leal, O., Bolívar, C., Ovalles, C., García, J.J., Espidel, Y.: Reversible adsorption of carbon dioxide on amine surface-bonded silica gel. Inorg. Chim. Acta 240, 183 (1995)
Lewis, M., Glaser, R.: Synergism of catalysis and reaction center rehybridization. A novel mode of catalysis in the hydrolysis of carbon dioxide. J. Phys. Chem. A 107, 6814 (2003)
Loiseau, T., Serre, C., Huguenard, C., Fink, G., Taulelle, F., Henry, M., Bataille, T., Ferey, G.: A rationale for the large breathing of the porous aluminum terephthalate (MIL-53) upon hydration. Chem. Eur. J. 10, 1373 (2004)
Magid, E., Turbeck, B.O.: Rates of spontaneous hydration of CO2 and reciprocal reaction in neutral aqueous solutions between 0 and 38 degrees. Biochim. Biophys. Acta 165, 515 (1968)
Millward, A.R., Yaghi, O.M.: Metal-organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature. J. Am. Chem. Soc. 127, 17998 (2005)
Mueller, U., Schubert, M., Puetter, T.H., Schirle-Arndt, K., Pastré, J.: Metal-organic frameworks—prospective industrial applications. J. Mater. Chem. 16, 626 (2006)
Noro, S.-I., Kitagawa, S., Kondo, M., Seki, A.: A new, methane adsorbent, porous coordination polymer [{CuSiF6(4,4′-bipyridine)(2)}(n)]. Angew. Chem. Int. Ed. 39, 2082 (2000)
Nunge, R.J., Gill, W.N.: Gas-Liquid Kinetics: the Absorption of Carbon Dioxide in Diethanolamine. A.I.Ch.E. 9, 469 (1963)
Ohmori, O., Fujita, M.: Heterogeneous catalysis of a coordination network: cyanosilylation of imines catalyzed by a Cd(II)-(4,4′-bipyridine) square grid complex, Chem. Commun. 1586 (2004)
Pauling, L.: The Nature of the Chemical Bond, 3rd edn. Cornell University Press, Ithaca (1960)
Ramsahye, N.A., Maurin, G., Bourrelly, S., Llewellyn, P.L., Devic, T., Serre, C., Loiseau, T., Ferey, G.: Adsorption of CO2 in metal organic frameworks of different metal centres: Grand Canonical Monte Carlo simulations compared to experiments. Adsorption 13, 461 (2007)
Rouquerol, F., Rouquerol, J., Sing, K.: Adsorption by Powders and Porous Solids. Academic Press, San Diego (1999)
Rowsell, J.L.C., Yaghi, O.M.: Strategies for hydrogen storage in metal-organic frameworks. Angew. Chem. Int. Ed. 44, 4670 (2005)
Satyapal, S., Filburn, T., Trela, J., Strange, J.: Performance and properties of a solid amine sorbent for carbon dioxide removal in life support application. Energy Fuels 15, 250 (2001)
Seo, J.S., Whang, D., Lee, H., Jun, S.I., Oh, J., Jeon, Y.J., Kim, K.: A homochiral metal-organic porous material for enantioselective separation and catalysis. Nature 404, 982 (2000)
Siriwardane, R.V., Shen, M.-S., Fisher, E.P., Poston, J.P.: Adsorption of CO2 on molecular sieve and activated carbon. Energy Fuels 15, 279 (2001)
Sudik, A.C., Millward, A.R., Ockwig, N.W., Côte, A.P., Kim, J., Yaghi, O.M.: Design, synthesis, structure, and gas (N2, Ar, CO2, CH4, and H2) sorption properties of porous metal-organic tetrahedral and heterocuboidal polyhedra. J. Am. Chem. Soc. 127, 7110 (2005)
Swang, O., Blom, R.: Amine catalysed carbonic acid equilibrium, manuscript in preparation (2008)
Uemura, K., Matsuda, R., Kitagawa, S.: Flexible microporous coordination polymers. J. Solid State Chem. 178, 2420 (2005)
Versteeg, G.F., Van Dijck, L.A.J., van Swaaij, W.P.M.: On the kinetics between CO2 and alkanolamines both in aqueous and non-aqueous solutions. An overview. Chem. Eng. Commun. 144, 113 (1996)
Wing-Foy, A.G., Matzger, A.J., Yaghi, O.M.: Exceptional H2 saturation uptake in microporous metal-organic frameworks. J. Am. Chem. Soc. 128, 3494 (2006)
Xu, X., Song, C., Andresen, J.M., Miller, B.G., Scaroni, A.W.: Novel polyethyleneimine-modified mesoporous molecular sieve of MCM-41 type as high-capacity adsorbent for CO2 capture. Energy Fuels 16, 1463 (2002)
Zaworotko, M.J.: Nanoporous structures by design. Angew. Chem. Int. Ed. 39, 3052 (2000)
Zheng, F., Tran, D.N., Busche, B.J., Fryxell, G.E., Addleman, R.S., Zemanian, T.S., Aardahl, C.L.: Ethylenediamine-modified SBA-15 as regenerable CO2 Sorbent. Ind. Eng. Chem. Res. 44, 3099 (2005)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Arstad, B., Fjellvåg, H., Kongshaug, K.O. et al. Amine functionalised metal organic frameworks (MOFs) as adsorbents for carbon dioxide. Adsorption 14, 755–762 (2008). https://doi.org/10.1007/s10450-008-9137-6
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10450-008-9137-6