Skip to main content

Advertisement

Log in

Amine functionalised metal organic frameworks (MOFs) as adsorbents for carbon dioxide

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

Three different porous metal organic framework (MOF) materials have been prepared with and without uncoordinated amine functionalities inside the pores. The materials have been characterized and tested as adsorbents for carbon dioxide. At 298 K the materials adsorb significant amount of carbon dioxide, the amine functionalised adsorbents having the highest CO2 adsorption capacities, the best adsorbing around 14 wt% CO2 at 1.0 atm CO2 pressure. At 25 atm CO2 pressure, up to 60 wt% CO2 can be adsorbed. At high pressures the CO2 uptake is mostly dependent on the available surface area and pore volume of the material in question. For one of the iso-structural MOF pairs the introduction of amine functionality increases the differential adsorption enthalpy (from isosteric method) from 30 to around 50 kJ/mole at low CO2 pressures, while the adsorption enthalpies reach the same level at increase pressures. The high pressure experimental results indicate that MOF based solid adsorbents can have a potential for use in pressure swing adsorption of carbon dioxide at elevated pressures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Arstad, B., Blom, R., Swang, O.: CO2 absorption in aqueous solutions of alkanolamines: mechanistic insight from quantum chemical calculations. J. Phys. Chem. A 111, 1222–1228 (2007)

    Article  CAS  Google Scholar 

  • Barthelet, K., Marrot, J., Ferey, G., Riou, D.: V-III(OH){O2C-C6H4-CO2}⋅(HO2C-C6H4-CO2H)x(DMF)y(H2O) z (or MIL-68), a new vanadocarboxylate with a large pore hybrid topology: reticular synthesis with infinite inorganic building blocks? Chem. Commun. 520 (2004)

  • Batten, S.R., Robson, R.: Interpenetrating nets: ordered, periodic entanglement. Angew. Chem. Int. Ed. 37, 1460 (1998)

    Article  Google Scholar 

  • Beck, J.S., Vartuli, J.C., Roth, W.J., Leonowicz, M.E., Kresge, C.T., Schmitt, K.D., Chu, C.T.W., Olson, D.H., Sheppard, E.W., McCullen, S.B., Higgins, J.B., Schlenker, J.L.: A mew family of mesoporous molecular-sieves prepared with liquid-crystal templates. J. Am. Chem. Soc. 114, 10834 (1992)

    Article  CAS  Google Scholar 

  • Blom, R., Heyn, R.H., Swang, O., Fjellvåg, H., Kongshaug, K.O., Birkeland Nielsen, R.K.: Hydrogen storage in porous coordination polymers. Chem. Eng. Trans. 4, 325 (2004)

    Google Scholar 

  • Bourrelly, S., Liewellyn, P.L., Serre, C., Millange, F., Loiseau, T., Ferey, G.: Different behaviours of methane and carbon dioxide in the isotypic nanoporous metal terephthalates MIL-53 and MIL-47. J. Am. Chem. Soc. 127, 13519 (2005)

    Article  CAS  Google Scholar 

  • Chae, H.K., Siberio-Perez, D.Y., Kim, J., Og, Y.B., Eddaoudi, M., Matzger, A.J., O’Keeffe, M., Yaghi, O.M.: A route to high surface area, porosity and inclusion of large molecules in crystals. Nature 427, 523 (2004)

    Article  CAS  Google Scholar 

  • Chang, A.C.C., Chuang, S.S.C., Gray, M.C.M., Soong, Y.: In-situ infrared study of CO2 adsorption on SBA-15 grafted with γ-(aminopropyl)triethoxysilane. Energy Fuels 17, 468 (2003)

    Article  CAS  Google Scholar 

  • Dai, L.X.: Chiral metal-organic assemblies—A new approach to immobilizing homogeneous asymmetric catalysts. Angew. Chem. Int. Ed. (Highlights) 43, 5726 (2004)

    Article  CAS  Google Scholar 

  • Delaney, S.W., Knowles, G.P., Chaffee, A.L.: Hybrid Mesoporous materials for carbon dioxide separation. Fuel Chem Div. Preprints 47, 65 (2002)

    CAS  Google Scholar 

  • Dybtsev, D.N.: Rigid and flexible: A highly porous metal-organic framework with unusual guest-dependent dynamic behavior. Angew. Chem. Int. Ed. 43, 5033 (2004)

    Article  CAS  Google Scholar 

  • Fletcher, A.J., Thomas, K.M., Rosseinsky, M.J.: Flexibility in metal-organic framework materials: impact on sorption properties. J. Solid State Chem. 178, 2491 (2005)

    Article  CAS  Google Scholar 

  • Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery, J.A. Jr., Vreven, T., Kudin, K.N., Burant, J.C., Millam, J.M., Iyengar, S.S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G.A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J.E., Hratchian, H.P., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Ayala, P.Y., Morokuma, K., Voth, G.A., Salvador, P., Dannenberg, J.J., Zakrzewski, V.G., Dapprich, S., Daniels, A.D., Strain, M.C., Farkas, O., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Ortiz, J.V., Cui, Q., Baboul, A.G., Clifford, S., Cioslowski, J., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R.L., Fox, D.J., Keith, T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Challacombe, M., Gill, P.M.W., Johnson, B., Chen, W., Wong, M.W., Gonzalez, C., Pople, J.A.: Gaussian 03, Revision B0.4. Gaussian, Wallingford (2004)

    Google Scholar 

  • Gómez-Lor, B., Gutiérrez-Puebla, E., Iglesias, M., Monge, M.A., Ruiz-Valero, C., Snejko, N.: Novel 2D and 3D indium metal-organic frameworks: Topology and catalytic properties. Chem. Mater. 17, 2568 (2005)

    Article  Google Scholar 

  • Hagrman, P.J., Hagrman, D., Zubieta, J.: Organic-inorganic hybrid materials: from “simple” coordination polymers to organodiamine-templated molybdenum oxides. Angew. Chem. Int. Ed. 38, 2638 (1999)

    Article  Google Scholar 

  • Harlick, P.J.E., Sayari, A.: Applications of pore-expanded mesoporous silicas. 3. Triamine silane grafting for enhanced CO2 adsorption. Ind. Eng. Chem. Res. 45, 3248 (2006)

    Article  CAS  Google Scholar 

  • Harlick, P.J.E., Tezel, F.H.: An experimental adsorbent screening study for CO2 removal from N2. Micropor. Mesopor. Mater. 76, 71 (2004)

    Article  CAS  Google Scholar 

  • Hiyoshi, N., Yogo, K., Yashima, T.: Adsorption of carbon dioxide on aminosilane-modified mesoporous silica. J. Jpn. Petrol. Inst. 48, 29 (2005)

    Article  CAS  Google Scholar 

  • Huang, H.Y., Yang, R.T., Chinn, D., Munson, C.L.: Amine-grafted MCM-48 and silica xerogel as superior sorbents for acidic gas removal from natural gas. Ind. Eng. Chem. Res. 42, 2427 (2003)

    Article  CAS  Google Scholar 

  • James, S.L.: Metal-organic frameworks. Chem. Soc. Rev. 32, 276 (2003)

    Article  CAS  Google Scholar 

  • Khatri, R.A., Chuang, S.S.C., Soong, Y.: Gray, M.C.M.: Carbon dioxide capture by diamine-grafted SBA-15: A combined Fourier transform infrared and mass spectrometry study. Ind. Eng. Chem. Res. 44, 3702 (2005)

    Article  CAS  Google Scholar 

  • Kim, S.J.I., Guliants, V., Lin, J.Y.S.: Tailoring pore properties of MCM-48 silica for selective adsorption of CO2. J. Phys. Chem. B 109, 6287 (2005)

    Article  CAS  Google Scholar 

  • Kitagawa, S., Kitaura, R., Noro, S.-I.: Functional porous coordination polymers. Angew. Chem. Int. Ed. 43, 2334 (2004)

    Article  CAS  Google Scholar 

  • Knowles, G.P., Graham, J.V., Delaney, S.W., Chaffee, A.L.: Aminopropyl-functionalized mesoporous silicas as CO2 adsorbents. Fuel Proc. Tech. 86, 1435 (2005a)

    Article  CAS  Google Scholar 

  • Knowles, G.P., Delaney, S.W., Chaffee, A.L.: Amine-functionalised mesoporous silicas as CO2 adsorbents. Stud. Surf. Sci. Catal. 156, 887 (2005b)

    Article  CAS  Google Scholar 

  • Kongshaug, K.O., Fjellvåg, H.: University of Oslo, unpublished results (2008)

  • Kresge, C.T., Leonowicz, M.E., Roth, W.J., Vartuli, J.C., Beck, J.S.: Ordered mesoporous molecular-sieves synthesized by a liquid-crystal template mechanism. Nature 359, 710 (1992)

    Article  CAS  Google Scholar 

  • Leal, O., Bolívar, C., Ovalles, C., García, J.J., Espidel, Y.: Reversible adsorption of carbon dioxide on amine surface-bonded silica gel. Inorg. Chim. Acta 240, 183 (1995)

    Article  CAS  Google Scholar 

  • Lewis, M., Glaser, R.: Synergism of catalysis and reaction center rehybridization. A novel mode of catalysis in the hydrolysis of carbon dioxide. J. Phys. Chem. A 107, 6814 (2003)

    Article  CAS  Google Scholar 

  • Loiseau, T., Serre, C., Huguenard, C., Fink, G., Taulelle, F., Henry, M., Bataille, T., Ferey, G.: A rationale for the large breathing of the porous aluminum terephthalate (MIL-53) upon hydration. Chem. Eur. J. 10, 1373 (2004)

    Article  CAS  Google Scholar 

  • Magid, E., Turbeck, B.O.: Rates of spontaneous hydration of CO2 and reciprocal reaction in neutral aqueous solutions between 0 and 38 degrees. Biochim. Biophys. Acta 165, 515 (1968)

    CAS  Google Scholar 

  • Millward, A.R., Yaghi, O.M.: Metal-organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature. J. Am. Chem. Soc. 127, 17998 (2005)

    Article  CAS  Google Scholar 

  • Mueller, U., Schubert, M., Puetter, T.H., Schirle-Arndt, K., Pastré, J.: Metal-organic frameworks—prospective industrial applications. J. Mater. Chem. 16, 626 (2006)

    Article  CAS  Google Scholar 

  • Noro, S.-I., Kitagawa, S., Kondo, M., Seki, A.: A new, methane adsorbent, porous coordination polymer [{CuSiF6(4,4′-bipyridine)(2)}(n)]. Angew. Chem. Int. Ed. 39, 2082 (2000)

    Article  CAS  Google Scholar 

  • Nunge, R.J., Gill, W.N.: Gas-Liquid Kinetics: the Absorption of Carbon Dioxide in Diethanolamine. A.I.Ch.E. 9, 469 (1963)

    CAS  Google Scholar 

  • Ohmori, O., Fujita, M.: Heterogeneous catalysis of a coordination network: cyanosilylation of imines catalyzed by a Cd(II)-(4,4′-bipyridine) square grid complex, Chem. Commun. 1586 (2004)

  • Pauling, L.: The Nature of the Chemical Bond, 3rd edn. Cornell University Press, Ithaca (1960)

    Google Scholar 

  • Ramsahye, N.A., Maurin, G., Bourrelly, S., Llewellyn, P.L., Devic, T., Serre, C., Loiseau, T., Ferey, G.: Adsorption of CO2 in metal organic frameworks of different metal centres: Grand Canonical Monte Carlo simulations compared to experiments. Adsorption 13, 461 (2007)

    Article  CAS  Google Scholar 

  • Rouquerol, F., Rouquerol, J., Sing, K.: Adsorption by Powders and Porous Solids. Academic Press, San Diego (1999)

    Google Scholar 

  • Rowsell, J.L.C., Yaghi, O.M.: Strategies for hydrogen storage in metal-organic frameworks. Angew. Chem. Int. Ed. 44, 4670 (2005)

    Article  CAS  Google Scholar 

  • Satyapal, S., Filburn, T., Trela, J., Strange, J.: Performance and properties of a solid amine sorbent for carbon dioxide removal in life support application. Energy Fuels 15, 250 (2001)

    Article  CAS  Google Scholar 

  • Seo, J.S., Whang, D., Lee, H., Jun, S.I., Oh, J., Jeon, Y.J., Kim, K.: A homochiral metal-organic porous material for enantioselective separation and catalysis. Nature 404, 982 (2000)

    Article  CAS  Google Scholar 

  • Siriwardane, R.V., Shen, M.-S., Fisher, E.P., Poston, J.P.: Adsorption of CO2 on molecular sieve and activated carbon. Energy Fuels 15, 279 (2001)

    Article  CAS  Google Scholar 

  • Sudik, A.C., Millward, A.R., Ockwig, N.W., Côte, A.P., Kim, J., Yaghi, O.M.: Design, synthesis, structure, and gas (N2, Ar, CO2, CH4, and H2) sorption properties of porous metal-organic tetrahedral and heterocuboidal polyhedra. J. Am. Chem. Soc. 127, 7110 (2005)

    Article  CAS  Google Scholar 

  • Swang, O., Blom, R.: Amine catalysed carbonic acid equilibrium, manuscript in preparation (2008)

  • Uemura, K., Matsuda, R., Kitagawa, S.: Flexible microporous coordination polymers. J. Solid State Chem. 178, 2420 (2005)

    Article  CAS  Google Scholar 

  • Versteeg, G.F., Van Dijck, L.A.J., van Swaaij, W.P.M.: On the kinetics between CO2 and alkanolamines both in aqueous and non-aqueous solutions. An overview. Chem. Eng. Commun. 144, 113 (1996)

    Article  CAS  Google Scholar 

  • Wing-Foy, A.G., Matzger, A.J., Yaghi, O.M.: Exceptional H2 saturation uptake in microporous metal-organic frameworks. J. Am. Chem. Soc. 128, 3494 (2006)

    Article  Google Scholar 

  • Xu, X., Song, C., Andresen, J.M., Miller, B.G., Scaroni, A.W.: Novel polyethyleneimine-modified mesoporous molecular sieve of MCM-41 type as high-capacity adsorbent for CO2 capture. Energy Fuels 16, 1463 (2002)

    Article  CAS  Google Scholar 

  • Zaworotko, M.J.: Nanoporous structures by design. Angew. Chem. Int. Ed. 39, 3052 (2000)

    Article  CAS  Google Scholar 

  • Zheng, F., Tran, D.N., Busche, B.J., Fryxell, G.E., Addleman, R.S., Zemanian, T.S., Aardahl, C.L.: Ethylenediamine-modified SBA-15 as regenerable CO2 Sorbent. Ind. Eng. Chem. Res. 44, 3099 (2005)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Blom.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arstad, B., Fjellvåg, H., Kongshaug, K.O. et al. Amine functionalised metal organic frameworks (MOFs) as adsorbents for carbon dioxide. Adsorption 14, 755–762 (2008). https://doi.org/10.1007/s10450-008-9137-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-008-9137-6

Keywords

Navigation