Adsorption

, Volume 14, Issue 6, pp 755–762 | Cite as

Amine functionalised metal organic frameworks (MOFs) as adsorbents for carbon dioxide

  • Bjørnar Arstad
  • Helmer Fjellvåg
  • Kjell Ove Kongshaug
  • Ole Swang
  • Richard Blom
Article

Abstract

Three different porous metal organic framework (MOF) materials have been prepared with and without uncoordinated amine functionalities inside the pores. The materials have been characterized and tested as adsorbents for carbon dioxide. At 298 K the materials adsorb significant amount of carbon dioxide, the amine functionalised adsorbents having the highest CO2 adsorption capacities, the best adsorbing around 14 wt% CO2 at 1.0 atm CO2 pressure. At 25 atm CO2 pressure, up to 60 wt% CO2 can be adsorbed. At high pressures the CO2 uptake is mostly dependent on the available surface area and pore volume of the material in question. For one of the iso-structural MOF pairs the introduction of amine functionality increases the differential adsorption enthalpy (from isosteric method) from 30 to around 50 kJ/mole at low CO2 pressures, while the adsorption enthalpies reach the same level at increase pressures. The high pressure experimental results indicate that MOF based solid adsorbents can have a potential for use in pressure swing adsorption of carbon dioxide at elevated pressures.

Keywords

Metal organic frameworks Amine functionality Carbon dioxide Adsorption 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arstad, B., Blom, R., Swang, O.: CO2 absorption in aqueous solutions of alkanolamines: mechanistic insight from quantum chemical calculations. J. Phys. Chem. A 111, 1222–1228 (2007) CrossRefGoogle Scholar
  2. Barthelet, K., Marrot, J., Ferey, G., Riou, D.: V-III(OH){O2C-C6H4-CO2}⋅(HO2C-C6H4-CO2H)x(DMF)y(H2O)z (or MIL-68), a new vanadocarboxylate with a large pore hybrid topology: reticular synthesis with infinite inorganic building blocks? Chem. Commun. 520 (2004) Google Scholar
  3. Batten, S.R., Robson, R.: Interpenetrating nets: ordered, periodic entanglement. Angew. Chem. Int. Ed. 37, 1460 (1998) CrossRefGoogle Scholar
  4. Beck, J.S., Vartuli, J.C., Roth, W.J., Leonowicz, M.E., Kresge, C.T., Schmitt, K.D., Chu, C.T.W., Olson, D.H., Sheppard, E.W., McCullen, S.B., Higgins, J.B., Schlenker, J.L.: A mew family of mesoporous molecular-sieves prepared with liquid-crystal templates. J. Am. Chem. Soc. 114, 10834 (1992) CrossRefGoogle Scholar
  5. Blom, R., Heyn, R.H., Swang, O., Fjellvåg, H., Kongshaug, K.O., Birkeland Nielsen, R.K.: Hydrogen storage in porous coordination polymers. Chem. Eng. Trans. 4, 325 (2004) Google Scholar
  6. Bourrelly, S., Liewellyn, P.L., Serre, C., Millange, F., Loiseau, T., Ferey, G.: Different behaviours of methane and carbon dioxide in the isotypic nanoporous metal terephthalates MIL-53 and MIL-47. J. Am. Chem. Soc. 127, 13519 (2005) CrossRefGoogle Scholar
  7. Chae, H.K., Siberio-Perez, D.Y., Kim, J., Og, Y.B., Eddaoudi, M., Matzger, A.J., O’Keeffe, M., Yaghi, O.M.: A route to high surface area, porosity and inclusion of large molecules in crystals. Nature 427, 523 (2004) CrossRefGoogle Scholar
  8. Chang, A.C.C., Chuang, S.S.C., Gray, M.C.M., Soong, Y.: In-situ infrared study of CO2 adsorption on SBA-15 grafted with γ-(aminopropyl)triethoxysilane. Energy Fuels 17, 468 (2003) CrossRefGoogle Scholar
  9. Dai, L.X.: Chiral metal-organic assemblies—A new approach to immobilizing homogeneous asymmetric catalysts. Angew. Chem. Int. Ed. (Highlights) 43, 5726 (2004) CrossRefGoogle Scholar
  10. Delaney, S.W., Knowles, G.P., Chaffee, A.L.: Hybrid Mesoporous materials for carbon dioxide separation. Fuel Chem Div. Preprints 47, 65 (2002) Google Scholar
  11. Dybtsev, D.N.: Rigid and flexible: A highly porous metal-organic framework with unusual guest-dependent dynamic behavior. Angew. Chem. Int. Ed. 43, 5033 (2004) CrossRefGoogle Scholar
  12. Fletcher, A.J., Thomas, K.M., Rosseinsky, M.J.: Flexibility in metal-organic framework materials: impact on sorption properties. J. Solid State Chem. 178, 2491 (2005) CrossRefGoogle Scholar
  13. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery, J.A. Jr., Vreven, T., Kudin, K.N., Burant, J.C., Millam, J.M., Iyengar, S.S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G.A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J.E., Hratchian, H.P., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Ayala, P.Y., Morokuma, K., Voth, G.A., Salvador, P., Dannenberg, J.J., Zakrzewski, V.G., Dapprich, S., Daniels, A.D., Strain, M.C., Farkas, O., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Ortiz, J.V., Cui, Q., Baboul, A.G., Clifford, S., Cioslowski, J., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R.L., Fox, D.J., Keith, T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Challacombe, M., Gill, P.M.W., Johnson, B., Chen, W., Wong, M.W., Gonzalez, C., Pople, J.A.: Gaussian 03, Revision B0.4. Gaussian, Wallingford (2004) Google Scholar
  14. Gómez-Lor, B., Gutiérrez-Puebla, E., Iglesias, M., Monge, M.A., Ruiz-Valero, C., Snejko, N.: Novel 2D and 3D indium metal-organic frameworks: Topology and catalytic properties. Chem. Mater. 17, 2568 (2005) CrossRefGoogle Scholar
  15. Hagrman, P.J., Hagrman, D., Zubieta, J.: Organic-inorganic hybrid materials: from “simple” coordination polymers to organodiamine-templated molybdenum oxides. Angew. Chem. Int. Ed. 38, 2638 (1999) CrossRefGoogle Scholar
  16. Harlick, P.J.E., Sayari, A.: Applications of pore-expanded mesoporous silicas. 3. Triamine silane grafting for enhanced CO2 adsorption. Ind. Eng. Chem. Res. 45, 3248 (2006) CrossRefGoogle Scholar
  17. Harlick, P.J.E., Tezel, F.H.: An experimental adsorbent screening study for CO2 removal from N2. Micropor. Mesopor. Mater. 76, 71 (2004) CrossRefGoogle Scholar
  18. Hiyoshi, N., Yogo, K., Yashima, T.: Adsorption of carbon dioxide on aminosilane-modified mesoporous silica. J. Jpn. Petrol. Inst. 48, 29 (2005) CrossRefGoogle Scholar
  19. Huang, H.Y., Yang, R.T., Chinn, D., Munson, C.L.: Amine-grafted MCM-48 and silica xerogel as superior sorbents for acidic gas removal from natural gas. Ind. Eng. Chem. Res. 42, 2427 (2003) CrossRefGoogle Scholar
  20. James, S.L.: Metal-organic frameworks. Chem. Soc. Rev. 32, 276 (2003) CrossRefGoogle Scholar
  21. Khatri, R.A., Chuang, S.S.C., Soong, Y.: Gray, M.C.M.: Carbon dioxide capture by diamine-grafted SBA-15: A combined Fourier transform infrared and mass spectrometry study. Ind. Eng. Chem. Res. 44, 3702 (2005) CrossRefGoogle Scholar
  22. Kim, S.J.I., Guliants, V., Lin, J.Y.S.: Tailoring pore properties of MCM-48 silica for selective adsorption of CO2. J. Phys. Chem. B 109, 6287 (2005) CrossRefGoogle Scholar
  23. Kitagawa, S., Kitaura, R., Noro, S.-I.: Functional porous coordination polymers. Angew. Chem. Int. Ed. 43, 2334 (2004) CrossRefGoogle Scholar
  24. Knowles, G.P., Graham, J.V., Delaney, S.W., Chaffee, A.L.: Aminopropyl-functionalized mesoporous silicas as CO2 adsorbents. Fuel Proc. Tech. 86, 1435 (2005a) CrossRefGoogle Scholar
  25. Knowles, G.P., Delaney, S.W., Chaffee, A.L.: Amine-functionalised mesoporous silicas as CO2 adsorbents. Stud. Surf. Sci. Catal. 156, 887 (2005b) CrossRefGoogle Scholar
  26. Kongshaug, K.O., Fjellvåg, H.: University of Oslo, unpublished results (2008) Google Scholar
  27. Kresge, C.T., Leonowicz, M.E., Roth, W.J., Vartuli, J.C., Beck, J.S.: Ordered mesoporous molecular-sieves synthesized by a liquid-crystal template mechanism. Nature 359, 710 (1992) CrossRefGoogle Scholar
  28. Leal, O., Bolívar, C., Ovalles, C., García, J.J., Espidel, Y.: Reversible adsorption of carbon dioxide on amine surface-bonded silica gel. Inorg. Chim. Acta 240, 183 (1995) CrossRefGoogle Scholar
  29. Lewis, M., Glaser, R.: Synergism of catalysis and reaction center rehybridization. A novel mode of catalysis in the hydrolysis of carbon dioxide. J. Phys. Chem. A 107, 6814 (2003) CrossRefGoogle Scholar
  30. Loiseau, T., Serre, C., Huguenard, C., Fink, G., Taulelle, F., Henry, M., Bataille, T., Ferey, G.: A rationale for the large breathing of the porous aluminum terephthalate (MIL-53) upon hydration. Chem. Eur. J. 10, 1373 (2004) CrossRefGoogle Scholar
  31. Magid, E., Turbeck, B.O.: Rates of spontaneous hydration of CO2 and reciprocal reaction in neutral aqueous solutions between 0 and 38 degrees. Biochim. Biophys. Acta 165, 515 (1968) Google Scholar
  32. Millward, A.R., Yaghi, O.M.: Metal-organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature. J. Am. Chem. Soc. 127, 17998 (2005) CrossRefGoogle Scholar
  33. Mueller, U., Schubert, M., Puetter, T.H., Schirle-Arndt, K., Pastré, J.: Metal-organic frameworks—prospective industrial applications. J. Mater. Chem. 16, 626 (2006) CrossRefGoogle Scholar
  34. Noro, S.-I., Kitagawa, S., Kondo, M., Seki, A.: A new, methane adsorbent, porous coordination polymer [{CuSiF6(4,4′-bipyridine)(2)}(n)]. Angew. Chem. Int. Ed. 39, 2082 (2000) CrossRefGoogle Scholar
  35. Nunge, R.J., Gill, W.N.: Gas-Liquid Kinetics: the Absorption of Carbon Dioxide in Diethanolamine. A.I.Ch.E. 9, 469 (1963) Google Scholar
  36. Ohmori, O., Fujita, M.: Heterogeneous catalysis of a coordination network: cyanosilylation of imines catalyzed by a Cd(II)-(4,4′-bipyridine) square grid complex, Chem. Commun. 1586 (2004) Google Scholar
  37. Pauling, L.: The Nature of the Chemical Bond, 3rd edn. Cornell University Press, Ithaca (1960) Google Scholar
  38. Ramsahye, N.A., Maurin, G., Bourrelly, S., Llewellyn, P.L., Devic, T., Serre, C., Loiseau, T., Ferey, G.: Adsorption of CO2 in metal organic frameworks of different metal centres: Grand Canonical Monte Carlo simulations compared to experiments. Adsorption 13, 461 (2007) CrossRefGoogle Scholar
  39. Rouquerol, F., Rouquerol, J., Sing, K.: Adsorption by Powders and Porous Solids. Academic Press, San Diego (1999) Google Scholar
  40. Rowsell, J.L.C., Yaghi, O.M.: Strategies for hydrogen storage in metal-organic frameworks. Angew. Chem. Int. Ed. 44, 4670 (2005) CrossRefGoogle Scholar
  41. Satyapal, S., Filburn, T., Trela, J., Strange, J.: Performance and properties of a solid amine sorbent for carbon dioxide removal in life support application. Energy Fuels 15, 250 (2001) CrossRefGoogle Scholar
  42. Seo, J.S., Whang, D., Lee, H., Jun, S.I., Oh, J., Jeon, Y.J., Kim, K.: A homochiral metal-organic porous material for enantioselective separation and catalysis. Nature 404, 982 (2000) CrossRefGoogle Scholar
  43. Siriwardane, R.V., Shen, M.-S., Fisher, E.P., Poston, J.P.: Adsorption of CO2 on molecular sieve and activated carbon. Energy Fuels 15, 279 (2001) CrossRefGoogle Scholar
  44. Sudik, A.C., Millward, A.R., Ockwig, N.W., Côte, A.P., Kim, J., Yaghi, O.M.: Design, synthesis, structure, and gas (N2, Ar, CO2, CH4, and H2) sorption properties of porous metal-organic tetrahedral and heterocuboidal polyhedra. J. Am. Chem. Soc. 127, 7110 (2005) CrossRefGoogle Scholar
  45. Swang, O., Blom, R.: Amine catalysed carbonic acid equilibrium, manuscript in preparation (2008) Google Scholar
  46. Uemura, K., Matsuda, R., Kitagawa, S.: Flexible microporous coordination polymers. J. Solid State Chem. 178, 2420 (2005) CrossRefGoogle Scholar
  47. Versteeg, G.F., Van Dijck, L.A.J., van Swaaij, W.P.M.: On the kinetics between CO2 and alkanolamines both in aqueous and non-aqueous solutions. An overview. Chem. Eng. Commun. 144, 113 (1996) CrossRefGoogle Scholar
  48. Wing-Foy, A.G., Matzger, A.J., Yaghi, O.M.: Exceptional H2 saturation uptake in microporous metal-organic frameworks. J. Am. Chem. Soc. 128, 3494 (2006) CrossRefGoogle Scholar
  49. Xu, X., Song, C., Andresen, J.M., Miller, B.G., Scaroni, A.W.: Novel polyethyleneimine-modified mesoporous molecular sieve of MCM-41 type as high-capacity adsorbent for CO2 capture. Energy Fuels 16, 1463 (2002) CrossRefGoogle Scholar
  50. Zaworotko, M.J.: Nanoporous structures by design. Angew. Chem. Int. Ed. 39, 3052 (2000) CrossRefGoogle Scholar
  51. Zheng, F., Tran, D.N., Busche, B.J., Fryxell, G.E., Addleman, R.S., Zemanian, T.S., Aardahl, C.L.: Ethylenediamine-modified SBA-15 as regenerable CO2 Sorbent. Ind. Eng. Chem. Res. 44, 3099 (2005) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Bjørnar Arstad
    • 1
  • Helmer Fjellvåg
    • 2
  • Kjell Ove Kongshaug
    • 2
  • Ole Swang
    • 1
  • Richard Blom
    • 1
  1. 1.SINTEF Materials and ChemistryOsloNorway
  2. 2.Centre for Materials Science and Nanotechnology and Department of ChemistryUniversity of OsloOsloNorway

Personalised recommendations