Skip to main content
Log in

Separation characteristics of some phenoxy herbicides from aqueous solution

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

The adsorption and desorption characteristics of some phenoxy herbicides (CPA 2,4-D, and MCPA) from an aqueous solution on the active carbon materials (GAC, F-400) were studied. Adsorption equilibrium capacities of the phenoxy herbicides increased with a decrease in pH of the solution. Adsorption equilibrium isotherms were represented by the Sips equation. Kinetic parameters were measured in a batch adsorber to analyze the adsorption rates of the phenoxy herbicides. The internal diffusion coefficients were determined by comparing the experimental concentration curves with those predicted from the surface diffusion model and the pore diffusion model. The adsorption model based on the linear driving force approximation (LDFA) was used to simulate the adsorption behavior of the phenoxy herbicides in a fixed bed adsorber. Over 95 percent desorption of the phenoxy herbicides was obtained using distilled water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A s :

surface area of the adsorbent particles, m2

b :

isotherm parameter, m3/mol

c :

equilibrium concentration of the solution, mol/m3

c o :

initial liquid phase concentration, mol/m3

c i :

initial concentration of bulk fluid, mol/m3

c s :

concentration on the surface of adsorbent, mol/m3

D e,p :

effective diffusion coefficient, m2/sec

D L :

axial dispersion coefficient, m2/sec

D m :

molecular diffusion coefficient, m2/sec

d p :

particle diameter, m

D p :

effective pore diffusion coefficient, m2/sec

D s :

effective surface diffusion coefficient, m2/sec

k :

isotherm parameter, [mol/kg][mol/m3]−1/n

k f :

film mass transfer coefficient, m/sec

M :

total mass of sorbent particle, kg

n :

isotherm parameter, –

N A :

rate of mass transfer of adsobates to the external surface of the adsorbent, mol/s

q m :

maximum adsorption capacity of adsorbent, mol/kg

q o :

initial adsorbed phase adsorbate concentration, mol/kg

r :

radial distance, m

R p :

particle radius, m

t :

time, sec, hr

V :

volume of solution, m3

v :

interstitial velocity, m/s

W :

weight of adsorbent, kg

ρ p :

particle density, kg/m3

ε b :

bed porosity

ε p :

particle porosity

τ p :

tortuosity factor

Bi:

Biot number

GAC:

granular activated carbon

PDM:

pore diffusion model

Re:

Reynolds number

Sc:

Schmidt number

SDM:

surface diffusion model

References

  • Aksu, Z., Kabasakal, E.: Batch adsorption of 2,4-dichlorophenoxy-acetic acid (2,4-D) from aqueous solution by granular activated carbon. Sep. Pur. Technol. 35, 223–240 (2004)

    Article  CAS  Google Scholar 

  • Areerachakul, N., Vigneswaran, S., Ngo, H.H.: Kandasamy Granular activated carbon (GAC) adsorption-photocatalysis hybrid system in the removal of herbicide from water. Sep. Pur. Technol. 55, 206–211 (2007)

    Article  CAS  Google Scholar 

  • Cohen, D.B.: Groundwater contamination by toxic substances—a California assessment. In: Garner, W.Y., Honeycutt, R.C., Nigg, H.N. (eds.) Evaluation of Pesticides in Groundwater. ACS Symposium Series, vol. 315, pp. 499–529. American Chemical Society, Washington (1986)

    Google Scholar 

  • Fielding, M., Barcelo, D., Helweg, A., Galassi, S., Torstensson, L., Zoonen, P., Wolte, R., Angeletti, G.: Pesticides in ground and drinking water. Water Pollution Research Report 27, Commission of the European Communities, Brussels (1992)

  • Freundlich, H.: Uber die adsorption in loesungen. J. Phys. Chem. 57, 385–470 (1907)

    CAS  Google Scholar 

  • Hodgson, E.P., Levi, E.: Pesticides: an important but underused model for the environmental health science. Environ. Health Perspect. 104, 97–105 (1996)

    Article  CAS  Google Scholar 

  • Kah, M., Brown, C.D.: Changes in pesticide adsorption with time at high soil to solution ratios. Chemosphere 68, 1335–1343 (2007)

    Article  CAS  Google Scholar 

  • Langmuir, I.: Adsorption of gases on plain surfaces of glass mica and platinum. J. Am. Chem. Soc. 40, 1361–1403 (1918)

    Article  CAS  Google Scholar 

  • Ma, Y.H., Lee, T.Y.: Transient diffusion in solids with a bipore distribution. AICHE. J. 22, 147–152 (1976)

    Article  CAS  Google Scholar 

  • Mangat, S.S., Elefsiniotis, P.: Biodegradation of the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) in sequencing batch reactors. Water Res. 33, 861–867 (1999)

    Article  CAS  Google Scholar 

  • Masamune, S., Smith, J.M.: Adsorption rate studies-significance of pore diffusion. AICHE. J. 10, 246–252 (1964)

    Article  CAS  Google Scholar 

  • Misic, D.M., Sudo, Y., Suzuki, M., Kawazeo, K.: Liqiid to particle mass transfer in a stirred batch adsorptiom tank with nonlinear isotherm. J. Chem, Eng. Jpn. 15, 490 (1982)

    Article  Google Scholar 

  • Ravenzwaay, B.V., Pigott, G., Leibold, E.: Absorption, distribution, metabolism and excretion of 4-chloro-2-methylphenoxyacetic acid (MCPA) in rats. Food Chem. Toxicol. 42, 115–125 (2004)

    Article  CAS  Google Scholar 

  • Reid, R.C., Prausnitz, J.M., Pokung, B.E.: The Properties of Gases and Liquidss. MaGraw-Hill Co., New York (1994)

    Google Scholar 

  • Roberto, L.R., Geankoplis, C.J.: Diffusion in liquid filled pores of activated carbon. I: Pore volume diffusion. Can. J. Chem. Eng. 72, 262–271 (1994)

    Article  Google Scholar 

  • Roberto, L.R., Rangel, J.R., Bernal, L.A., Berber, M.S.: Intraparticle diffusion of cadmium and zinc ions during adsorption from aqueous solution on activated carbon. J. Chem. Technol. Biotechnol. 80(8), 924–933 (2005)

    Article  CAS  Google Scholar 

  • Ruthven, D.M.: Principles of Adsorption and Adsorption Processes. Wiley, New York (1984)

    Google Scholar 

  • Sips, R.: On the structure of a catalyst surface. J. Chem. Phys. 16(5), 490–495 (1948)

    Article  CAS  Google Scholar 

  • Traegner, U.K., Suidan, M.T.: Evaluation of surface and film diffusion coefficients for carbon adsorption. Water Res. 23, 267–273 (1989)

    Article  CAS  Google Scholar 

  • Thorstensen, C.W., Lode, O., Christiansen, A.L.: Development of a solid-phase extraction method for phenoxy acids and bentazone in water and comparison to a liquid-liquid extraction method. J. Agric. Food Chem. 48, 5829–5833 (2000)

    Article  CAS  Google Scholar 

  • Wakao, N., Funazkri: Effect of fluid dispersion coefficient on particle to fluid mass transfer coefficients in packed bed. Chem. Eng. Sci. 33, 1375–1384 (1978)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung-Yong Cho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, TY., Park, SS., Kim, SJ. et al. Separation characteristics of some phenoxy herbicides from aqueous solution. Adsorption 14, 611–619 (2008). https://doi.org/10.1007/s10450-008-9129-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-008-9129-6

Keywords

Navigation