Skip to main content
Log in

Fundamental studies of gas sorption within mesopores situated amidst an inter-connected, irregular network

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

There has been little, or no, direct testing of theories of gas sorption within particular pores situated amidst a highly inter-connected pore network. The concept of thermodynamically independent pores within networks has also been challenged. In this work, a novel integrated nitrogen sorption and mercury porosimetry technique has been used to deconvolve the condensation and evaporation processes within a specific subset of pores contained within a larger, irregular network. The sizes and geometry of these pores were obtained completely independently of gas sorption, using mercury porosimetry and NMR cryoporometry, respectively. Hence, various theories of capillary condensation, such as the Kelvin equation, the Broeckhoff-de Boer method, Saam-Cole theory, and NLDFT could be directly tested, and the potential influence of any collective network phenomena detected. It was found that, even for a shielded pore, the Cohan equation for a cylindrical meniscus gave rise to the best prediction for the relative pressure of capillary condensation, once the effects of surface chemical heterogeneity on multi-layer build-up had been taken into account. The results were also found to be incompatible with the presence of particular collective adsorption effects, such as advanced condensation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, R.B.: Modifications of the Brunauer, Emmett and Teller equation. J. Am. Chem. Soc. 68, 686–691 (1946)

    Article  CAS  Google Scholar 

  • Androutsopoulos, G.P., Salmas, C.E.: A new model for capillary condensation-evaporation hysteresis based on a random corrugated pore structure concept: Prediction of intrinsic pore size distributions. 1. Model formulation. Ind. Eng. Chem. Res. 39, 3747–3763 (2000)

    Article  CAS  Google Scholar 

  • Avnir, D., Farin, D., Pfeifer, P.: Surface geometric irregularity of particulate materials: The fractal approach. J. Colloid Interface Sci. 103, 112–123 (1985)

    Article  CAS  Google Scholar 

  • Barrett, E.P., Joyner, L.G., Halenda, P.H.: The determination of pore volume and area distributions in porous substances-I. Computations from nitrogen isotherms. J. Am. Chem. Soc. 73, 373–380 (1951)

    Article  CAS  Google Scholar 

  • Beyea, S.D., Caprihan, A., Glass, S.J., DiGiovanni, A.: Nondestructive characterization of nanopore microstructure: Spatially resolved Brunauer-Emmett-Teller isotherms using nuclear magnetic resonance imaging. J. Appl. Phys. 94, 935–941 (2003)

    Article  CAS  Google Scholar 

  • Bras, W.: An SAXS/WAXS beamline at the ESRF and future experiments. J. Macromol. Sci. Phys. B37, 557–565 (1998)

    CAS  Google Scholar 

  • Broekhoff, J.C.P., De Boer, J.H.: Studies on pore systems in catalysts: X. Calculations of pore distributions from the adsorption branch of nitrogen sorption isotherms in the case of open cylindrical pores: B. Applications. J. Catal. 9, 15–27 (1967)

    Article  CAS  Google Scholar 

  • Brunauer, S., Emmett, P.H., Teller, E.: Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60, 309–319 (1938)

    Article  CAS  Google Scholar 

  • Brunauer, S., Skalny, J., Bodor, E.E.: Adsorption on nanoporous solids. J. Colloid Interface Sci. 30, 546–552 (1969)

    Article  CAS  Google Scholar 

  • Coasne, B., Grosman, A., Dupont-Pavlovsky, N., Ortega, C., Simon, M.: Adsorption in an ordered and non-interconnected mesoporous material: Single crystal porous silicon. Phys. Chem. Chem. Phys. 3, 1196–1200 (2001)

    Article  CAS  Google Scholar 

  • Cohan, L.H.: Sorption hysteresis and the vapor pressure of concave surfaces. J. Am. Chem. Soc. 60, 433 (1938)

    Article  CAS  Google Scholar 

  • de Boer, J.H.: The shapes of capillaries. In: Everett, D.H., Stone, F.S. (eds.) The Structure and Properties of Porous Solids, pp. 68–94. Butterworths, London (1958)

    Google Scholar 

  • Eanes, E.D., Posner, A.S.: Small-angle X-ray scattering measurements of surface areas. In: Flood, E.A. (ed.) The Solid-Gas Interface, pp. 975–994. Dekker, New York (1967)

    Google Scholar 

  • Esparza, J.M., Ojeda, M.L., Campero, A., Dominguez, A., Kornhauser, I., Rojas, F., Vidales, A.M., Lopez, R.H., Zgrablich, G.: N2 sorption scanning behaviour of SBA-15 porous substrates. Colloids Surf. A Physicochem. Eng. Asp. 241, 35–45 (2004)

    Article  CAS  Google Scholar 

  • Findenegg, G.H., Gross, S., Michalski, T.: Multi-layer adsorption and pore condensation in controlled-pore glass: A test of the Saam-Cole theory of mesopore filling. In: Motoyuki, S. (ed.) Proc. IVth Int. Conf. on Fundamentals of Adsorption, Kyoto, pp. 161–168. International Adsorption Society (1992)

  • Gelb, L.D., Gubbins, K.E.: Pore size distributions in porous glasses: A computer simulation study. Langmuir 15, 305–308 (1999)

    Article  CAS  Google Scholar 

  • Grosse, A.V.: Densities, volumes, expansion coefficients and atomic cell dimensions of metallic mercury for its entire solid and liquid temperature range, i.e. from zero absolute to its critical point (1733 K). J. Inorg. Nucl. Chem. 27, 773–786 (1965)

    Article  CAS  Google Scholar 

  • Halsey, G.D.: Physical adsorption on non-uniform surfaces. J. Chem. Phys. 16, 931 (1948)

    Article  CAS  Google Scholar 

  • Hanzawa, Y., Kaneko, K., Yoshizawa, N., Pekala, R.W., Dresselhaus, M.S.: The pore structure determination of carbon aerogels. Adsorption 4, 187–195 (1998)

    Article  CAS  Google Scholar 

  • Harkins, W.D., Jura, G.: An adsorption method for the determination of the area of a solid without the assumption of a molecular area, and the area occupied by nitrogen molecules on the surfaces of solids. J. Chem. Phys. 11, 431 (1943)

    Article  CAS  Google Scholar 

  • Honig, J.M.: Analysis of multilayer gas adsorption isotherms using the concept of surface heterogeneity. J. Phys. Chem. 57, 349–351 (1953)

    Article  CAS  Google Scholar 

  • Jaroniec, M., Solovyov, L.A.: Improvement of the Kruk-Jaroniec-Sayari method for pore size analysis of ordered silicas with cylindrical mesopores. Langmuir 22, 6757–6760 (2006)

    Article  CAS  Google Scholar 

  • Kikkinides, E.S., Kainourgiakis, M.E., Stubos, A.K.: Origin of hysteresis of gas adsorption in disordered porous media: Lattice gas model versus percolation theory. Langmuir 19, 3338–3344 (2003)

    Article  CAS  Google Scholar 

  • Kloubek, J.: Hysteresis in porosimetry. Powder Technol. 29, 63–73 (1981)

    Article  CAS  Google Scholar 

  • Kresge, C.T., Leonowicz, M.E., Roth, W.J., Vartuli, J.C., Beck, J.S.: Ordered mesoporous molecular sieves synthesised by a liquid-crystal template mechanism. Nature 359, 710–712 (1992)

    Article  CAS  Google Scholar 

  • Kruk, M., Jaroniec, M., Sayari, A.: Application of large pore MCM-41 molecular sieves to improve pore size analysis using nitrogen adsorption measurements. Langmuir 13, 6267–6273 (1997)

    Article  CAS  Google Scholar 

  • Liabastre, A.A., Orr, C.: An evaluation of pore structure by mercury penetration. J. Colloid Interface Sci. 64, 1–18 (1978)

    Article  CAS  Google Scholar 

  • Libby, B., Monson, P.A.: Adsorption/desorption hysteresis in inkbottle pores: A density functional theory and Monte-Carlo simulation study. Langmuir 20, 4289–4294 (2004)

    Article  CAS  Google Scholar 

  • Liley, P.E., Thomson, G.H., Friend, D.G., Daubert, T.E., Buck, E.: Physical and chemical data. In: Perry, R.H., Green, D.W. (eds.) Perry’s Chemical Engineers’ Handbook. McGraw-Hill, Singapore (1998)

    Google Scholar 

  • Lowell, S., Shields, J.E.: Powder Surface Area and Porosity. Chapman Hall, London (1984)

    Google Scholar 

  • Lowell, S., Shields, J., Charalambous, G., Manzione, J.: Adsorbate cross-sectional area as a function of the BET C constant. J. Colloid Interface Sci. 86, 191–195 (1982)

    Article  CAS  Google Scholar 

  • Ma, J., Qi, H., Qong, P.: Experimental study of multilayer adsorption on fractal surfaces in porous media. Phys. Rev. E 59, 2049–2059 (1999)

    Article  CAS  Google Scholar 

  • Mahnke, M., Mögel, H.J.: Fractal analysis of physical adsorption on material surfaces. Colloids Surf. A 216, 215–228 (2003)

    Article  CAS  Google Scholar 

  • Matsuhashi, H., Tanaka, T., Arata, K.: Measurement of heat of argon adsorption for the evaluation of relative acid strength of some sulphated metal oxides and H-type zeolites. J. Phys. Chem. B 105, 9669–9671 (2001)

    Article  CAS  Google Scholar 

  • McMillan, W.G.: Multilayer gas adsorption on composite surfaces. J. Chem. Phys. 15, 390–397 (1947)

    Article  CAS  Google Scholar 

  • Murray, K.L., Seaton, N.A., Day, M.A.: Use of mercury intrusion data, combined with nitrogen adsorption measurements, as a probe of pore network connectivity. Langmuir 15, 8155–8160 (1999)

    Article  CAS  Google Scholar 

  • Neimark, A.V., Ravikovitch, P.I.: Capillary condensation in MMS and pore structure characterization. Microporous Mesoporous Mater. 44–45, 697–707 (2001)

    Article  Google Scholar 

  • Pellenq, R.J.M., Rousseau, B., Levitz, P.E.: A grand-canonical Monte-Carlo study of argon adsorption/condensation in mesoporous silica glasses. Phys. Chem. Chem. Phys. 3, 1207–1212 (2001)

    Article  CAS  Google Scholar 

  • Petrov, O., Furó, I.: Curvature-dependent metastability of the solid phase and the freezing-melting hysteresis in pores. Phys. Rev. E 73, 011608 (2006)

    Article  CAS  Google Scholar 

  • Portsmouth, R.L., Gladden, L.F.: Determination of pore connectivity by mercury porosimetry. Chem. Eng. Sci. 46, 3023–3036 (1991)

    Article  CAS  Google Scholar 

  • Rigby, S.P., Edler, K.J.: The influence of mercury contact angle, surface tension and retraction mechanism on the interpretation of mercury porosimetry data. J. Colloid Interface Sci. 250, 175–190 (2002)

    Article  CAS  Google Scholar 

  • Rigby, S.P., Fletcher, R.S.: Experimental evidence for pore blocking as the mechanism for nitrogen sorption hysteresis in a mesoporous material. J. Phys. Chem. B 108, 4690–4695 (2004a)

    Article  CAS  Google Scholar 

  • Rigby, S.P., Fletcher, R.S.: Interfacing mercury porosimetry with nitrogen sorption. Part. Syst. Charact. 21, 138–148 (2004b)

    Article  Google Scholar 

  • Rigby, S.P., Gladden, L.F.: Molecular dynamical studies of the mobility of benzene and water on silica surfaces: Correlation with the influence of surface chemistry and morphology. Stud. Surf. Sci. Catal. 122, 183–190 (1999)

    CAS  Google Scholar 

  • Rigby, S.P., Barwick, D., Fletcher, R.S., Riley, S.N.: Interpreting mercury porosimetry data for catalyst supports using semi-empirical alternatives to the Washburn equation. Appl. Catal. A 238, 303–318 (2003)

    Article  CAS  Google Scholar 

  • Rigby, S.P., Fletcher, R.S., Riley, S.N.: Characterisation of porous solids using integrated nitrogen sorption and mercury porosimetry. Chem. Engng Sci. 59, 41–51 (2004)

    Article  CAS  Google Scholar 

  • Rigby, S.P., Evbuomwan, I.O., Watt-Smith, M.J., Edler, K.J., Fletcher, R.S.: Using nano-cast model porous media and integrated gas sorption to improve fundamental understanding and data interpretation in mercury porosimetry. Part. Syst. Charact. 23, 82–93 (2006a)

    Article  CAS  Google Scholar 

  • Rigby, S.P., Watt-Smith, M.J., Chigada, P., Chudek, J.A., Fletcher, R.S., Wood, J., Bakalis, S., Miri, T.: Studies of the entrapment of non-wetting fluid within nanoporous media using a synergistic combination of MRI and micro-computed X-ray tomography. Chem. Eng. Sci. 61, 7579–7592 (2006b)

    Article  CAS  Google Scholar 

  • Rouquerol, F., Rouquerol, J., Sing, K.: Adsorption by Powders and Porous Solids: Principles, Methodology and Applications. Academic Press, London (1999)

    Google Scholar 

  • Saam, F.W., Cole, M.W.: Excitations and thermodynamics for liquid-helium films. Phys. Rev. B 11, 1086–1105 (1975)

    Article  CAS  Google Scholar 

  • Smarsly, B., Goltner, C., Antonietti, M., Ruland, W., Hoinkis, E.: SANS investigation of nitrogen sorption in porous silica. J. Phys. Chem. B 105, 831–840 (2001)

    Article  CAS  Google Scholar 

  • Schreiber, A., Ketealsen, I., Findenegg, G.H., Hoinkis, E.: Thickness of adsorbed nitrogen films in SBA-15 silica from small angle neutron diffraction. Stud. Surf. Sci. Catal. 160, 17–24 (2006)

    Article  Google Scholar 

  • Van Brakel, J., Modry, S., Svata, M.: Mercury porosimetry: State of the art. Powder Technol. 29, 1–12 (1981)

    Article  Google Scholar 

  • Washburn, E.W.: The dynamics of capillary flow. Phys. Rev. 17, 273–283 (1921)

    Article  Google Scholar 

  • Watt-Smith, M.J., Edler, K.J., Rigby, S.P.: An experimental study of gas adsorption on fractal surfaces. Langmuir 21, 2281–2292 (2005)

    Article  CAS  Google Scholar 

  • Zhao, D., Huo, Q., Feng, J., Chmelka, B.F., Stucky, G.D.: Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. J. Am. Chem. Soc. 120, 6024–6036 (1998)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sean P. Rigby.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rigby, S.P., Chigada, P.I., Perkins, E.L. et al. Fundamental studies of gas sorption within mesopores situated amidst an inter-connected, irregular network. Adsorption 14, 289–307 (2008). https://doi.org/10.1007/s10450-007-9091-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-007-9091-8

Keywords

Navigation