Abstract
In this study, the adsorption of an industrial dye Supranol Yellow 4GL onto Cetyltrimethylammonium-bentonite (CTAB-bentonite) is investigated. The organobentonite is synthesised by exchanging cetyltrimethylammonium cations (CTAB) with inorganic ions on the surface of bentonite. The adsorption of Supranol Yellow 4GL onto organobentonite is found to be maximum when the concentration of CTAB exchanged is 100% according to the cation exchange capacity of the clay (CEC). The modification of organobentonite is examined using XRD and FTIR techniques.
The effect of the process parameters such as: contact time, adsorbate concentration, adsorbent dose, pH and temperature are reported. Nearly 1200 seconds of contact time are found to be sufficient for the adsorption to reach equilibrium. The pseudo second order model is used to describe the kinetic data, and the rate constant is therefore evaluated. The dye adsorption to organobentonite is characterized by monolayer isotherm and caused by adsorption with relatively strong uptake. The Langmuir and Freundlich models adsorption are applied to describe the isotherm equilibrium and to determine its constants. The Langmuir and Freundlich models agree well with the experimental data with a adsorption capacity of 0.5 g of dye per g of organobentonite. A better fixation was obtained at acidic pH. The effect of temperature on the adsorption of dye has been also studied and the thermodynamic parameters ΔH, ΔS, ΔG, were determined. Organobentonite is found to be effective for removing Supranol Yellow 4GL dye from wastewater.
This is a preview of subscription content, access via your institution.
Abbreviations
- C i :
-
the initial concentration of dye, g/L
- C e :
-
the concentration of dye in solution after equilibrium, g/L
- V :
-
the total volume of the solution, L
- m :
-
the mass of the adsorbent, g
- q e :
-
the amounts of dye adsorbed at equilibrium time, g/g
- q :
-
the amounts of dye adsorbed at time t, g/g
- K 1 :
-
the pseudo-first order rate constant, sec−1
- K 2 :
-
the pseudo-second order rate constant, sec−1
- q m :
-
the amount of solute adsorbed per weight of adsorbent in forming a complete monolayer on the surface, g/g
- b :
-
Langmuir constant related to the energy, L/g
- R L :
-
dimensionless separation factor
- k and n:
-
Freundlich constants
- k d :
-
the partition coefficient, L/g
References
Al-Asheh, S., Duvniajak, Z.: Sorption of cadmium and other heavy metals by pine bark. Hazard. Mater. J. 56, 35–51 (1997)
Allen, S.J., Brown, P.A.: Isotherm analyses for single component and multi-component metal sorption onto lignite. Chem. Technol. Biotechnol. J. 62, 17–24 (1995)
Arami, M., Yousefi Limaee, N., Mohammad Mahmoodi, N., Salman Tabrizi, N.: Removal of dyes from colored textile wastewater by orange peel adsorbent: equilibrium and kinetic studies. Colloid Interface Sci. J. 288, 371–376 (2005)
Barrer, R.M., Macleod, D.M.: Activation of montmorillonite by ion exchange and adsorption complexes of tetraalkylammonium montmorillonites. Trans. Faraday Soc. 51, 1290–1300 (1955)
Bouberka, Z., Kacha, S., Kameche, M., Elmaleh, S., Derriche, Z.: Sorption study of an acid dye from aqueous solutions using modified clays. Hazard. Mater. J. B 119, 117–124 (2005)
Boyd, S.A., Mortland, M.M., Chiou, C.T.: Adsorption characteristics of organic compounds on hexadecyltrimethylammonium smectite. Soil Sci. Soc. Am. J. 52, 652–657 (1988)
Brower, G.R., Reed, G.D.: Economical pre-treatment for colour removal from textile dye wastes. In: Proceedings of 41st Purdue University Industrial Waste Conference, vol. 41, pp. 612–616 (1987)
Chiou, M.S., Chuang, G.S.: Competitive adsorption of dye metanil yellow and RB15 in acid solutions on chemically cross-linked chitosan beads. Chemosphere 62, 731–740 (2006)
Chiu, Y.C., Huang, L.N., Uang, C.M., Huang, J.F.: Determination of the cation exchange capacity of clay minerals by potentiometric titration using divalent cation electrodes. J. Colloid Surf. 46, 327 (1990)
Chung, Y.C., Li, Y.H., Chen, C.C.: Pollutant removal from wastewater using the biopolymer chitosan at different molecular weights. Environ. Sci. Health J. 40, 1775–1790 (2005)
Degs, Y.A., Khraisheh, M.A.M., Allen, S.J., Ahmad, M.N.: Effect of carbon surface chemistry on the removal of reactive dyes from textile effluent. Water Res. 34, 927–931 (2000)
Dentel, S.K., Bottero, J.Y., Khatib, K., Demougeot, H., Duguet, J.P., Anselme, C.: Sorption of tannic acid, phenol, and 2,4,5-trichlorophenol on organoclays. Water Res. 29, 1273–1280 (1995)
El Guendi, M.S.: Adsorption kinetics of cationic dyes stuffs onto natural clay. Adsorpt. Sci. Technol. 13, 295–303 (1995)
Gardiner, D.K., Borne, B.J.: Textile wastewaters: treatment and environmental effects. Soc. Dyes Colourists J. 94, 339–348 (1978)
Giles, C.H., Mac Ewan, T.H., Nakhawa, S.N., Smith, D.S.: Systems of classification of solution adsorption isotherms, Chem. Soc. J., 3973–3993 (1960)
Gupta, G.S., Shukla, S.P.: An inexpensive adsorption technique for the treatment of carpet effluents by low cost materials. Adsorpt. Sci. Technol. 13, 15–26 (1996)
Harper, M., Purnell, C.: Alkylammonium montmorillonites as adsorbents for organic vapours from air. Environ. Sci. Technol. 24, 55–62 (1990)
Ho, Y.S., Kay, M.: Kinetic model for lead (II) sorption onto peat. Adsorpt. Sci. Technol. 16, 243 (1998)
Horning, R.H.: Characterization and treatment of textile dyeing wastewaters. Tex. Chem. Colourists 9, 24–27 (1977)
Jaynes, W.F., Boyd, S.A.: Clay mineral type and organic compound sorption by hexadecyltrimethylammonium exchanged clays. Soil Sci. Soc. Am. J. 55, 43–48 (1991)
Jordan, J.W.: Organophilic bentonites. I. Swelling in organic liquids. Phys. Chem. J. 53, 294–306 (1949)
Kacha, S., Ouali, S., Elmaleh, M.S.: Elimination des colorants des eaux résiduaires de l’industrie textile par la bentonite et les sels d’aluminium. Rev. Sci. Eau 10, 233–247 (1997)
Kacha, S., Derriche, Z., Elmaleh, S.: Equilibrium and kinetics of colour removal from dye solutions with bentonite and polyaluminium hydroxide. Water Environ. Res. 75, 1 (2003)
Kahr, G., Madsen, F.T.: Determination of the cation exchange capacity and the surface area of bentonite, illite and kaolinite by methylene blue adsorption. Appl. Clay Sci. 9, 327 (1995)
Khattri, S.D., Singh, M.K.: Colour removal from dye wastewater using sugar cane dust as an adsorbent. Adsorpt. Sci. Technol. 17, 269–278 (1999)
Konduru, R., Ramakrishna, K.R., Viraraghavan, T.: Dye removal using low cost adsorbents. Water Sci. Technol. 36, 189–196 (1997)
Koumanova, B., Peeva, P., Allen, S.J., Gallagher, K.A., Healy, M.G.: Bioadsorption from aqueous solutions by eggshell membranes and Rhizopus oryzae: equilibrium and kinetic studies. Chem. Technol. Biotechnol. J. 77, 539–545 (2002)
Krishna, D.G., Bhattacheryya, G.: Adsorption of methylene blue on kaolinite. Appl. Clay Sci. 20, 295–303 (2002)
Lagergreen, S.: About the theory of so-called adsorption of soluble substances. K Svenska Vetenskapsakad Handl. 24, 1–39 (1898)
Liversidge, M., Lloyd, G.J., Wase, D.A.J., Forster, C.F.: Removal of basic blue 41 dye from aqueous solution by linseed cake. Process. Biochem. 32, 473–477 (1997)
Lizhong, Z., Xiaogang, R., Shaobin, Y.: Use of cetyltrimethylammonium bromide-bentonite to remove organic contaminants of varying polar character from water. Environ. Sci. Technol. 32, 3374–3378 (1998)
Mahlok, J.L., Shindala, A.M., Griff, E.C., Barnett, W.A.: Treating dye and finishing wastes. Am. Dye Stuff Report 64, 24–46 (1975)
Mc Kay, G., Allen, S.J.: Application of kinetic models to the adsorption of copper (II) on to peat. Can. Chem. Eng. J. 58, 521–525 (1980)
Morais, L.C., Freitas, O.M., Goncalves, E.P., Vasconcelos, L.T., Gonzalez Beca, C.G.: Reactive dyes removal from wastewaters by adsorption on eucalyptus bark: variables that define the process. Water Res. 33, 979–988 (1999)
Nagarethinam, K., Mariappan, M.S.: Kinetics and mechanism of removal of methylene blue by adsorption on various carbons: a comparative study. Dyes Pigment 51, 25–40 (2001)
Namasivayam, C., Yamuna, R.T.: Adsorption of direct red 12 B by biogas residual slurry: equilibrium and rate processes. Environ. Pollut. 89, 1–7 (1995)
Namasivayam, C., Prabha, D., Kumutha, M.: Removal of direct red and acid brilliant blue by adsorption. Biores. Technol. 64, 77–79 (1998)
Ozcan, D., Oncu, E.M., Ozcan, A.S.: Adsorption of acid blue 193 from aqueous solutions onto DEDMA-Sepeolite. Hazard. Mater. J. 129, 244–252 (2006)
Paudit, P., Basu, S.: Removal of organic dyes from water by liq-liq extraction using reverse micelles. J. Colloid Interface Sci. 245, 208 (2002)
Poots, V.J.P., Mc Kay, G., Healy, J.J.: The removal of acid dye from effluent using natural adsorbents—I. Peat. Water Res. 10, 1061–1066 (1976)
Raghavacharya, C.: Colour removal from industrial effluent—a comparative review of available technologies. Chem. Eng. World 32, 53–58 (1997)
Shu, H.T., Li, D., Scala, A.A.: Adsorption of small organic pollutants from aqueous streams by aluminosilicate-based microporous materials. Sep. Purif. Technol. 11, 27–36 (1997)
Smith, J.A., Tuck, D.M., Jaffe, P.R., Mueller, R.T.: Effect of surfactants on the mobility of nonpolar organic contaminants in porous media in organic substances and sediments in water. In: Baker, R.A. (ed.) pp. 201–230. Lewis (1991)
Sun, G., Xu, X.: Sunflower stalks as adsorbent for colour removal from textile wastewater. Ind. Eng. Chem. Res. 36, 808–812 (1997)
Wu, F.C., Tseng, R.L., Juang, R.S.: Kinetics of colour removal by adsorption from water using activated clay. Environ. Technol. 22, 721 (2001)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Khenifi, A., Bouberka, Z., Sekrane, F. et al. Adsorption study of an industrial dye by an organic clay. Adsorption 13, 149–158 (2007). https://doi.org/10.1007/s10450-007-9016-6
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10450-007-9016-6
Keywords
- Adsorption
- Supranol Yellow 4GL
- Bentonite
- CTAB
- Langmuir