Skip to main content

Gas Permeation Through Zeolite Single Crystal Membranes

Abstract

Diffusion of methane and argon mixtures through single crystal membranes is studied using the Dual-Control Volume-Grand Canonical Molecular Dynamics method. This study focuses on understanding the impact of crystal structure on surface resistance and membrane performance by comparing diffusion through silicalite, mordenite, AlPO4-5 and ZSM-12. Results showed that the contribution of surface resistance on membrane selectivity varies with the structure of the zeolite framework. Surface resistance is larger and longer range in silicalite, with an overall trend of silicalite > ZSM-12 > mordenite > AlPO4-5. This difference is attributed primarily to the smaller diameter of the silicalite pores, but the one-dimensional pore systems also seem to focus the translational momentum such that the surface resistance is smaller and shorter range.

This is a preview of subscription content, access via your institution.

References

  • Ahunbay, M.G., J.R., Elliott, and O. Talu, “The Diffusion Process of Methane Through a Silicalite Single Crystal Membrane” J. Phys. Chem. B, 106, 5163–5168 (2002).

    Article  Google Scholar 

  • Ahunbay, M.G., J.R., Elliott, and O. Talu, “Surface Resistance to Permeation Through the Silicalite Single Crystal Membrane:Variation with Permeant” J. Phys. Chem. B, 108, 7801–7808 (2004).

    Article  Google Scholar 

  • Ahunbay, M.G., J.R., Elliott, and O. Talu, “The Effect of Surface Resistances on the Diffusion of Binary Mixtures in the Silicalite Single Crystal Membrane” J. Phys. Chem. B, 109, 923–929 (2005).

    Article  Google Scholar 

  • Barrer, R.M., Langmuir, 3, 309 (1987).

    Article  Google Scholar 

  • Clark, L.A., A., Gupta, and R.Q. Snurr, “Siting and Segregation Effects of Simple Molecules in Zeolites MFI, MOR, and BOG” J. Phys. Chem. B, 102, 6720–6731 (1998).

    Article  Google Scholar 

  • El Amrani, S., “Etude de la diffusion des gaz rares dans les zeolithes par la dynamique moleculaire” PhD Thesis; University of Lyon, France (1990).

  • Ford, D.M. and E.D., Glandt, “Steric Hindrance at the Entrances to Small Pores” J. Mem. Sci., 107, 47–57 (1995).

    Article  Google Scholar 

  • Goodbody, S.J., K. Watanabe, D. MacGowan, J.P.R.B. Walton, and J. Quirke, “Molecular Simulation of Methane and Butane in Silicalite” J. Chem. Soc., Faraday Trans, 87, 1951–1958 (1991).

    Google Scholar 

  • Heffelfinger, G.S. and F. van Swol, “Diffusion in Lennard-Jones Fluids using Dual Control Volume Grand Canonical Dynamics Simulation(DCV-GCMD)” J. Chem. Phys., 100, 7548–7552 (1994).

    Article  Google Scholar 

  • Karger, J. and D.M., Ruthven, “On the Comparison Between Macroscopic and NMR Measurements of Intracarystalline Diffusion in Zeolites.” Zeolites, 9, 267–281 (1989).

    Article  Google Scholar 

  • Karger, J. and D.M. Ruthven, Diffusion in Zeolites and Other Microporous Solids, Wiley, New York, 1992.

    Google Scholar 

  • Kocirik, M., P., Struve, K. Fiedler, and M. Bulow, “A Model for the Mass-transfer Resistance at the surface of Zeolite Crystals” J. Chem. Soc., Faraday Trans. 1, 88, 3001 (1988).

    Google Scholar 

  • MacElroy, J.M.D., “Nonequilibrium Molecular Dynamics Simulation of Diffusion and Flow in Thin Microporous Membranes” J. Chem. Phys., 101, 5724(1994).

    Article  Google Scholar 

  • Martin, M.G., A.P., Thompson, and T.M. Nenoff, “Effect of Pressure, membrane Thickness, and Placement of Control Volumes on the Flux of Methane through Thin Silicalite Membranes:A Dual Control Volume Grand Canonical Molecular Dynamic Study” J. Chem. Phys., 114, 7174–7181(2001).

    Article  Google Scholar 

  • Skoulidas, A.I. and D.S., Sholl, “Transport Diffusivities of CH4, CF4, He, Ne, Ar, Xe, and SF6 in Silicalite from Atomistic Simulations” J. Phys. Chem. B, 106, 5058–5067 (2002).

    Article  Google Scholar 

  • Skoulidas, A.I. and D.S., Sholl, “Molecular Dynamics Simulations of Self-Diffusivities, Corrected Diffusivities, and Transport Diffusivities of Light Gases in Four Silica Zeolites To Assess Influences of Pore Shape and Connectivity” J. Phys. Chem. A, 107, 10132–10141 (2003).

    Article  Google Scholar 

  • Smit, B. and J.I., Siepmann, “Computer-Simulations of the Energetics and Siting of n-Alkanes in Zeolites” J. Phys. Chem-Us., 98, 8442–8452 (1994).

    Article  Google Scholar 

  • Sun, M.S., O., Talu, and D.B. Shah, “Diffusion Measurements through Embedded Zeolite Crystals” AIChE Journal, 42, 3001–3007 (1996).

    Article  Google Scholar 

  • Talu, O., M.A., Sun, and D.B. Shah, “Diffusivities of n-Alkanes in Silicalite by Steady-State Single-Crystal Membrane Technique” AIChE Journal, 44, 681–694 (1998).

    Article  Google Scholar 

  • Tepper, H.L., J.P. Hoogenboom, N.F.A. van der Vegt, and W.J. Briels, “Unidirectional diffusion of methane in AlPO4-5” Journal of Chemical Physics, 110, 11511–11516, (1999).

    Article  Google Scholar 

  • Thompson, A.P., D.M., Ford, and G.S. Heffelfinger, “Direct Molecular Simulation of Gradient-Driven Diffusion” J. Chem. Phys., 109, 6406 (1998).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Richard Elliott Jr..

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ahunbay, M.G., Elliott, J.R. & Talu, O. Gas Permeation Through Zeolite Single Crystal Membranes. Adsorption 11 (Suppl 1), 313–318 (2005). https://doi.org/10.1007/s10450-005-5943-2

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-005-5943-2

Keywords