Skip to main content
Log in

Error analysis of a collocation method on graded meshes for a fractional Laplacian problem

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

The numerical solution of a 1D fractional Laplacian boundary value problem is studied. Although the fractional Laplacian is one of the most important and prominent nonlocal operators, its numerical analysis is challenging, partly because the problem’s solution has in general a weak singularity at the boundary of the domain. To solve the problem numerically, we use piecewise linear collocation on a mesh that is graded to handle the boundary singularity. A rigorous analysis yields a bound on the maximum nodal error which shows how the order of convergence of the method depends on the grading of the mesh; hence, one can determine the optimal mesh grading. Numerical results are presented that confirm the sharpness of the error analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Acosta, G., Borthagaray, J.P.: A fractional Laplace equation: regularity of solutions and finite element approximations. SIAM J. Numer. Anal. 55(2), 472–495 (2017). https://doi.org/10.1137/15M1033952

    Article  MathSciNet  Google Scholar 

  2. Acosta, G., Borthagaray, J.P., Bruno, O., Maas, M.: Regularity theory and high order numerical methods for the (1D)-fractional Laplacian. Math. Comp. 87(312), 1821–1857 (2018). https://doi.org/10.1090/mcom/3276

    Article  MathSciNet  Google Scholar 

  3. Andreu-Vaillo, F., Mazón, J.M., Rossi, J.D., Toledo-Melero, J.J.: Nonlocal diffusion problems, Mathematical Surveys and Monographs, vol. 165. American Mathematical Society, Providence, RI; Real Sociedad Matemática Española, Madrid (2010). https://doi.org/10.1090/surv/165

  4. Bertoin, J.: Lévy processes, Cambridge Tracts in Mathematics, vol. 121. Cambridge University Press, Cambridge (1996)

    Google Scholar 

  5. Borthagaray, J.P., Leykekhman, D., Nochetto, R.H.: Local energy estimates for the fractional Laplacian. SIAM J. Numer. Anal. 59(4), 1918–1947 (2021). https://doi.org/10.1137/20M1335509

    Article  MathSciNet  Google Scholar 

  6. Borthagaray, J.P., Nochetto, R.H.: Constructive approximation on graded meshes for the integral fractional Laplacian. Constr. Approx. 57(2), 463–487 (2023). https://doi.org/10.1007/s00365-023-09617-5

    Article  MathSciNet  Google Scholar 

  7. Chen, H., Sheng, C., Wang, L.L.: On explicit form of the FEM stiffness matrix for the integral fractional Laplacian on non-uniform meshes. Appl. Math. Lett. 113, Paper No. 106864, 8 (2021). https://doi.org/10.1016/j.aml.2020.106864

  8. Chen, M., Deng, W.: Fourth order accurate scheme for the space fractional diffusion equations. SIAM J. Numer. Anal. 52(3), 1418–1438 (2014). https://doi.org/10.1137/130933447

    Article  MathSciNet  Google Scholar 

  9. Chen, M., Qi, W., Shi, J., Wu, J.: A sharp error estimate of piecewise polynomial collocation for nonlocal problems with weakly singular kernels. IMA J. Numer. Anal. 41(4), 3145–3174 (2021). https://doi.org/10.1093/imanum/draa054

    Article  MathSciNet  Google Scholar 

  10. D’Elia, M., Gunzburger, M.: The fractional Laplacian operator on bounded domains as a special case of the nonlocal diffusion operator. Comput. Math. Appl. 66(7), 1245–1260 (2013). https://doi.org/10.1016/j.camwa.2013.07.022

    Article  MathSciNet  Google Scholar 

  11. Duo, S., van Wyk, H.W., Zhang, Y.: A novel and accurate finite difference method for the fractional Laplacian and the fractional Poisson problem. J. Comput. Phys. 355, 233–252 (2018). https://doi.org/10.1016/j.jcp.2017.11.011

    Article  MathSciNet  Google Scholar 

  12. Faustmann, M., Karkulik, M., Melenk, J.M.: Local convergence of the FEM for the integral fractional Laplacian. SIAM J. Numer. Anal. 60(3), 1055–1082 (2022). https://doi.org/10.1137/20M1343853

    Article  MathSciNet  Google Scholar 

  13. Faustmann, M., Marcati, C., Melenk, J.M., Schwab, C.: Exponential convergence of hp-FEM for the integral fractional Laplacian in 1D (2022)

  14. Faustmann, M., Marcati, C., Melenk, J.M., Schwab, C.: Exponential convergence of hp FEM for the integral fractional Laplacian in polygons (2022)

  15. Faustmann, M., Melenk, J.M., Praetorius, D.: Quasi-optimal convergence rate for an adaptive method for the integral fractional Laplacian. Math. Comp. 90(330), 1557–1587 (2021). https://doi.org/10.1090/mcom/3603

    Article  MathSciNet  Google Scholar 

  16. Getoor, R.K.: First passage times for symmetric stable processes in space. Trans. Amer. Math. Soc. 101, 75–90 (1961). https://doi.org/10.2307/1993412

    Article  MathSciNet  Google Scholar 

  17. Han, R., Wu, S.: A monotone discretization for integral fractional Laplacian on bounded Lipschitz domains: pointwise error estimates under Hölder regularity. SIAM J. Numer. Anal. 60(6), 3052–3077 (2022). https://doi.org/10.1137/21M1448239

    Article  MathSciNet  Google Scholar 

  18. Huang, Y., Oberman, A.: Numerical methods for the fractional Laplacian: a finite difference-quadrature approach. SIAM J. Numer. Anal. 52(6), 3056–3084 (2014). https://doi.org/10.1137/140954040

    Article  MathSciNet  Google Scholar 

  19. Kwaśnicki, M.: Ten equivalent definitions of the fractional Laplace operator. Fract. Calc. Appl. Anal. 20(1), 7–51 (2017). https://doi.org/10.1515/fca-2017-0002

    Article  MathSciNet  Google Scholar 

  20. Ros-Oton, X., Serra, J.: The Dirichlet problem for the fractional Laplacian: regularity up to the boundary. J. Math. Pures Appl. 101(3), 275–302 (2014). https://doi.org/10.1016/j.matpur.2013.06.003

  21. Stynes, M., O’Riordan, E., Gracia, J.L.: Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation. SIAM J. Numer. Anal. 55(2), 1057–1079 (2017). https://doi.org/10.1137/16M1082329

    Article  MathSciNet  Google Scholar 

  22. Zhang, X., Gunzburger, M., Ju, L.: Nodal-type collocation methods for hypersingular integral equations and nonlocal diffusion problems. Comput. Methods Appl. Mech. Engrg. 299, 401–420 (2016). https://doi.org/10.1016/j.cma.2015.11.008

    Article  MathSciNet  Google Scholar 

Download references

Funding

The work of the first author was supported by the Science Fund for Distinguished Young Scholars of Gansu Province under Grant No. 23JRRA1020 and the Fundamental Research Funds for the Central Universities under grant lzujbky-2023-06. This work was supported by the National Natural Science Foundation of China under Grant Nos. 12225107 and 12071195, and the Innovative Groups of Basic Research in Gansu Province under Grant No. 22JR5RA391. The work of Martin Stynes is supported in part by the National Natural Science Foundation of China under grants 12171025 and NSAF-U2230402.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Stynes.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Communicated by: Bangti Jin

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, M., Deng, W., Min, C. et al. Error analysis of a collocation method on graded meshes for a fractional Laplacian problem. Adv Comput Math 50, 49 (2024). https://doi.org/10.1007/s10444-024-10146-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10444-024-10146-3

Keywords

Mathematics Subject Classification (2010)

Navigation