Skip to main content
Log in

A second-order scheme based on blended BDF for the incompressible MHD system

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

For the incompressible MHD equations, we present a fully discrete second-order-in-time scheme based on a blended BDF and extrapolation treatments for nonlinear terms. The proposed scheme is more accurate than the two-step BDF with additional nominal computational time and is still A-stable. Then, unconditional stability, long-time stability, and optimal convergence rate of the scheme are presented. At last, the numerical findings are verified by comparison with the two-step BDF scheme in several 2D and 3D numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Adams, R.A., Fournier, J.F.: Sobolev spaces, 2nd edn. Academic Press, New York (2003)

    MATH  Google Scholar 

  2. Arnold, D.N., Brezzi, F., Fortin, M.: A stable finite element for the Stokes equations. Calcolo 21, 337–344 (1984)

    MathSciNet  MATH  Google Scholar 

  3. Baker, G.A., Dougalis, V.A., Karakashian, O.A.: On a higher order accurate fully discrete Galerkin approximation to the Navier-Stokes equations. Math. Comp. 39(160), 339–375 (1982)

    MathSciNet  MATH  Google Scholar 

  4. Cao, C., Wu, J.: Two regularity criteria for the 3D MHD equations. J. Differ. Equ. 248(9), 2263–2274 (2010)

    MathSciNet  MATH  Google Scholar 

  5. Çıbık, A., Fatma, F. G., Songul. K.: Long time stability of a linearly extrapolated blended BDF scheme for multiphysics flows. Int. J. Numer. Anal. Mod., 2020, 17(1): 24-41

  6. Costabel, M., Dauge, M.: Maxwell and Lamé eigenvalues on polyhedra. Math. Meth. Appl. Sci. 22(3), 243–258 (1999)

    MATH  Google Scholar 

  7. Dahlquist, G.: A special stability problem for linear multistep methods. BIT Numer. Math. 3(1), 27–43 (1963)

    MathSciNet  MATH  Google Scholar 

  8. Dahlquist, G.: G-stability is equivalent to A-stability. BIT Numer. Math. 18, 384–401 (1978)

    MathSciNet  MATH  Google Scholar 

  9. Davidson, P.: An introduction to magnetohydrodynamics. Cambridge University Press, Cambridge (2001)

    MATH  Google Scholar 

  10. DeCaria, V., Layton, W., Zhao, H.: A time-accurate, adaptive discretization for fluid flow problems. Int. J. Numer. Anal. Mod. 17(2), 254–280 (2020)

    MathSciNet  MATH  Google Scholar 

  11. Ding, Q., Mao, S.P., Sun, J.: Error estimates of H(div)-conforming method for nonstationary magnetohydrodynamic system. Adv. Comput. Math. 48, 55 (2022)

    MathSciNet  MATH  Google Scholar 

  12. Gao, H., Qiu, W.: A semi-implicit energy conserving finite element method for the dynamical incompressible magnetohydrodynamics equations. Comput. Methods Appl. Mech. Engrg. 346, 982–1001 (2019)

    MathSciNet  MATH  Google Scholar 

  13. Galdi, G.P.: An introduction to the mathematical theory of the Navier-Stokes equations. Steady-State Problems. Springer, New York (2011)

    MATH  Google Scholar 

  14. Gerbeau, J.F.: A stabilized finite element method for the incompressible magnetohydrodynamic equations. Numer. Math. 87(1), 83–111 (2000)

    MathSciNet  MATH  Google Scholar 

  15. Gerbeau, J.F., Le, Bris, C., Lelièvre, T.: Mathematical methods for the magnetohydrodynamics of liquid metals. Oxford University Press, Oxford (2006)

  16. Girault, V., Raviart, P.A.: Finite element method for Navier-Stokes equations: theory and algorithms. Springer, New York (1986)

    MATH  Google Scholar 

  17. Greif, C., Li, D., Schötzau, D., et al.: A mixed finite element method with exactly divergence-free velocities for incompressible magnetohydrodynamics. Comput. Methods Appl. Mech. Engrg. 199(45–48), 2840–2855 (2010)

    MathSciNet  MATH  Google Scholar 

  18. Gunzburger, M.D., Meir, A.J., Peterson, J.S.: On the existence and uniqueness and finite element approximation of solutions of the equations of stationary incompressible magnetohydrodynamics. Math. Comp. 56, 523–563 (1991)

    MathSciNet  MATH  Google Scholar 

  19. Hairer, E., Wanner, G.: Solving ordinary differential equations. Stiff and Differential Algebraic Problems. Springer-Verlag, Berlin (2002)

    MATH  Google Scholar 

  20. Hasler, U., Schneebeli, A., Schötzau, D.: Mixed finite element approximation of incompressible MHD problems based on weighted regularization. Appl. Numer. Math. 51(1), 19–45 (2004)

    MathSciNet  MATH  Google Scholar 

  21. He, Y.: Unconditional convergence of the Euler semi-implicit scheme for the three-dimensional incompressible MHD equations. IMA J. Numer. Anal. 35(2), 767–801 (2015)

    MathSciNet  MATH  Google Scholar 

  22. He, C., Wang, Y.: On the regularity criteria for weak solutions to the magnetohydrodynamic equations. J. Differ. Equ. 238(1), 1–17 (2007)

    MathSciNet  MATH  Google Scholar 

  23. Hiptmair, R., Li, L., Mao, S., et al.: A fully divergence-free finite element method for magnetohydrodynamic equations. Math. Mod. Meth. Appl. Sci. 28(4), 659–695 (2018)

    MathSciNet  MATH  Google Scholar 

  24. Houston, P., Schötzau, D., Wei, X.: A mixed DG method for linearized incompressible magnetohydrodynamics. J. Sci. Comput., 2209, 40: 281-314

  25. Huang, P.Z.: A finite element algorithm for the nonstationary incompressible magnetohydrodynamic system based on a correction method. Mediterr. J. Math. 19, 113 (2022)

    MathSciNet  MATH  Google Scholar 

  26. Jiang, N.: A second-order ensemble method based on a blended backward differentiation formula timestepping scheme for time-dependent Navier-Stokes equations. Numer. Meth. Part. Diff. Equs. 33(1), 34–61 (2017)

    MathSciNet  MATH  Google Scholar 

  27. Keram, A., Huang, P.Z.: The Arrow-Hurwicz iterative finite element method for the stationary thermally coupled incompressible magnetohydrodynamics flow. J. Sci. Comput. 92, 11 (2022)

    MathSciNet  MATH  Google Scholar 

  28. Lin, F., Xu, L., Zhang, P.: Global small solutions of 2D incompressible MHD system. J. Differ. Equ. 259(10), 5440–5485 (2015)

    MATH  Google Scholar 

  29. Lin, F., Zhang, P.: Global small solutions to an MHD-type system: the three-dimensional case. Comm. Pure Appl. Math. 67(4), 531–580 (2014)

    MathSciNet  MATH  Google Scholar 

  30. Liu, S., Huang, P., He, Y.: An optimal error estimate of the BDF-Galerkin FEM for the incompressible MHD system. J. Math. Anal. Appl. 515(2), 126460 (2022)

    MathSciNet  MATH  Google Scholar 

  31. Lu, X., Huang, P.Z.: A modular grad-div stabilization for the 2D/3D nonstationary incompressible magnetohydrodynamic equations. J. Sci. Comput. 82(1), 1–24 (2020)

    MathSciNet  MATH  Google Scholar 

  32. Lu, X., Huang, P. Z., He, Y. N.: Fully discrete finite element approximation of the 2D/3D unsteady incompressible magnetohydrodynamic-Voigt regularization flows. Discrete Contin. Dyn. Syst.-Ser. B, 2021, 26: 815-845

  33. Ma, H.M., Huang, P.Z.: A vector penalty-projection approach for the time-dependent incompressible magnetohydrodynamics flows. Comput. Math. Appl. 120, 28–44 (2022)

    MathSciNet  MATH  Google Scholar 

  34. Moreau, R.: Magneto-hydrodynamics. Kluwer Academic Publishers, Dordrecht (1990)

    Google Scholar 

  35. Nielsen, E.J., Jones, W.T.: Integrated design of an active flow control system using a time-dependent adjoint method. Math. Model. Nat. Phenom. 6(3), 141–165 (2011)

    MathSciNet  MATH  Google Scholar 

  36. Nyukhtikov, M., Smelova, N., Mitchell, B.E., Holme, D.G.: Optimized dual-time stepping technique for time-accurate Navier-Stokes calculations. In: Hall, K.C., Kielb, R.E., Thomas, J.P. (eds.) Unsteady Aerodynamics. Aeroacoustics and Aeroelasticity of Turbomachines. Springer, Dordrecht (2006)

    Google Scholar 

  37. Priest, E.R., Hood, A.W.: Advances in solar system magnetohydrodynamics. Cambridge University Press, Cambridge (1991)

    Google Scholar 

  38. Prohl, A.: Convergent finite element discretizations of the nonstationary incompressible magnetohydrodynamics system. M2AN Math. Model. Numer. Anal., 2008, 42(6): 1065-1087

  39. Ravindran, S.S.: An analysis of the blended three-step backward differentiation formula time-stepping scheme for the Navier-Stokes-type system related to Soret convection. Numer. Funct. Anal. Optim. 36, 658–686 (2015)

    MathSciNet  MATH  Google Scholar 

  40. Rong, Y., Hou, Y., Zhang, Y.: Numerical analysis of a second order algorithm for simplified magnetohydrodynamic flows. Adv. Comput. Math. 43(4), 823–848 (2017)

    MathSciNet  MATH  Google Scholar 

  41. Schötzau, D.: Mixed finite element methods for stationary incompressible magnetohydrodynamics. Numer. Math. 96(4), 771–800 (2004)

    MathSciNet  MATH  Google Scholar 

  42. Sermange, M., Temam, R.: Some mathematical questions related to the MHD equations. Comm. Pure. Appl. Math. 36(5), 635–664 (1983)

    MathSciNet  MATH  Google Scholar 

  43. Shen, J.: Long time stability and convergence for fully discrete nonlinear Galerkin methods. Appl. Anal. 38(4), 201–229 (1990)

    MathSciNet  MATH  Google Scholar 

  44. Vatsa, V. N., Carpenter, M. H., Lockard, D. P.: Re-evaluation of an optimized second order backward difference (BDF2OPT) scheme for unsteady flow applications. 48th AIAA Aerospace Sciences Meeting, 2010, 122

  45. Wacker, B., Arndt, D., Lube, G.: Nodal-based finite element methods with local projection stabilization for linearized incompressible magnetohydrodynamics. Comput. Methods Appl. Mech. Engrg. 302, 170–192 (2016)

    MathSciNet  MATH  Google Scholar 

  46. Wang, L., Li, J., Huang, P.Z.: An efficient two-level algorithm for the 2D/3D stationary incompressible magnetohydrodynamics based on the finite element method. Int. Commun. Heat Mass Transf. 98, 183–190 (2018)

    Google Scholar 

  47. Wiedmer, M.: Finite element approximation for equations of magnetohydrodynamics. Math. Comp. 69(229), 83–101 (2000)

    MathSciNet  MATH  Google Scholar 

  48. Yang, J.J., Mao, S.P.: Second order fully decoupled and unconditionally energy-stable finite element algorithm for the incompressible MHD equations. Appl. Math. Lett. 121, 107467 (2021)

    MathSciNet  MATH  Google Scholar 

  49. Zhang, G.D., He, Y.N.: Decoupled schemes for unsteady MHD equations II: finite element discretization and numerical implementation. Comput. Math. Appl. 69, 1390–1406 (2015)

    MathSciNet  MATH  Google Scholar 

  50. Zhang, G.D., He, Y.N., Zhang, Y.: Streamline diffusion finite element method for stationary incompressible magnetohydrodynamics. Numer. Meth. Part. Differ. Equs. 30(6), 1877–1901 (2014)

    MathSciNet  MATH  Google Scholar 

  51. Zhang, Y., Hou, Y., Shan, L.: Numerical analysis of the Crank-Nicolson extrapolation time discrete scheme for magnetohydrodynamics flows. Numer. Meth. part. Diff. Equs. 31(6), 2169–2208 (2015)

    MathSciNet  MATH  Google Scholar 

  52. Zhang, G.D., Yang, J., Bi, C.: Second order unconditionally convergent and energy stable linearized scheme for MHD equations. Adv. Comput. Math. 44(2), 505–540 (2018)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the editor and anonymous reviewers for their helpful comments and suggestions which lead to a considerably improved presentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pengzhan Huang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Communicated by: Gianluigi Rozza

This work is supported by the Natural Science Foundation of Xinjiang Uygur Autonomous Region (grant numbers 2023D14014, 2021D01E11) and the Natural Science Foundation of China (grant numbers 12361077, 12271465).

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Huang, P. & He, Y. A second-order scheme based on blended BDF for the incompressible MHD system. Adv Comput Math 49, 74 (2023). https://doi.org/10.1007/s10444-023-10073-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10444-023-10073-9

Keywords

Mathematics Subject Classification (2010)

Navigation