Skip to main content
Log in

The stability and convergence analysis of finite difference methods for the fractional neutron diffusion equation

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

For the time-fractional neutron diffusion equation with a Caputo derivative of order \( \varvec{\alpha } \in ~(\varvec{0},\frac{\varvec{1}}{\varvec{2}}) \), we give the optimal error bounds of L1-type schemes under the spatial \( L^{\infty } \)-norm with lower regularity solution than typical \(| \varvec{\partial }_{\varvec{t}}^{\varvec{l}} \varvec{u}(\varvec{x},\varvec{t}) | \le \varvec{C} (\varvec{1+t}^{\varvec{2\alpha - l}}), \varvec{l = 0}, \varvec{1}, \varvec{2}\), where \(\varvec{2\alpha }\) is the highest order of the time-fractional derivative. The unique solvability and the numerical stability of schemes will be exported via a simple restriction of coefficients with non-uniform time steps \(\varvec{\tau }_{\varvec{n}} < \frac{\varvec{\pi }}{\varvec{4}}\). The truncation error of term \(\varvec{D}_{\varvec{0},\varvec{t}}^{\varvec{2\alpha }}\) with low regularity \(| \varvec{\partial }_{\varvec{t}}^{\varvec{l}} \varvec{u}(\varvec{x},\varvec{t}) | \le \varvec{C} (\varvec{1+t}^{\varvec{\alpha - l}}), \varvec{l = 0}, \varvec{1}, \varvec{2}\), and the global error of full discretizations will be given. In addition, several numerical examples will be shown to test our theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

The data that support the finding of this study are available on request from the corresponding author upon reasonable request.

References

  1. Roul, P., Rohil, V., Espinosa-Paredes, G., Prasad Goura, V.M.K., Gedam, R.S., Obaidurrahman, K.: Design and analysis of a numerical method for fractional neutron diffusion equation with delayed neutrons. Appl. Numer. Math. 157, 634–653 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  2. Lawrence, R.D.: Progress in nodal methods for the solution of the neutron diffusion and transport equations. Prog. Nucl. Energy 17(3), 271–301 (1986)

    Article  Google Scholar 

  3. Shen, S., Liu, F., Anh, V., Turner, I.: Detailed analysis of a conservative difference approximation for the time fractional diffusion equation. J. Appl. Math. Comput. 22(3), 1–19 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Zhuang, P., Liu, F.: Finite difference approximation for two-dimensional time fractional diffusion equation. J. Algorithms Comput. Technol. 1(1), 1–16 (2007)

    Article  Google Scholar 

  5. Chen, W., Ye, L., Sun, H.: Fractional diffusion equations by the Kansa method. Comput. Math. with Appl. 59(5), 1614–1620 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Zhang, Y., Sun, Z., Liao, H.: Finite difference methods for the time fractional diffusion equation on non-uniform meshes. J. Comput. Phys. 265, 195–210 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Liu, Y., Roberts, J., Yan, Y.: A note on finite difference methods for nonlinear fractional differential equations with non-uniform meshes. Int. J. Comput. Math. 95(6–7), 1151–1169 (2017)

    MathSciNet  MATH  Google Scholar 

  8. Stynes, M., O’Riordan, E., Gracia, J.L.: Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation. SIAM J. Numer. Anal. 55(2), 1057–1079 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  9. Mainardi, F.: The fundamental solutions for the fractional diffusion-wave equation. Appl. Math. Lett. 9(6), 23–28 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  10. Luchko, Y.: Maximum principle for the generalized time-fractional diffusion equation. J. Math. Anal. Appl. 351(1), 218–223 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chen, H., Stynes, M.: A discrete comparison principle for the time-fractional diffusion equation. Comput. Math. with Appl. 80(5), 917–922 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  12. Luchko, Y.: Some uniqueness and existence results for the initial-boundary-value problems for the generalized time-fractional diffusion equation. Comput. Math. with Appl. 59(5), 1766–1772 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Li, X., Xu, C.: Existence and uniqueness of the weak solution of the space-time fractional diffusion equation and a spectral method approximation. Commun. Comput. Phys. 8(5), 1016–1051 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. McLean, W.: Regularity of solutions to a time-fractional diffusion equation. The ANZIAM Journal 52(2), 123–138 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gorenflo, R., Luchko, Y., Yamamoto, M.: Time-fractional diffusion equation in the fractional Sobolev spaces. Fract. Calc. Appl. Anal. 18(3), 799–820 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ervin, V.J.: Regularity of the solution to fractional diffusion, advection, reaction equations in weighted Sobolev spaces. J. Differential Equations 278, 294–325 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  17. Alikhanov, A.A.: A new difference scheme for the time fractional diffusion equation. J. Comput. Phys. 280, 424–438 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Li, Z., Liang, Z., Yan, Y.: High-order numerical methods for solving time fractional partial differential equations. J. Sci. Comput. 71(2), 785–803 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ford, N.J., Yan, Y.: An approach to construct higher order time discretisation schemes for time fractional partial differential equations with nonsmooth data. Fract. Calc. Appl. Anal. 20(5), 1076–1105 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  20. Luchko, Y.: Initial-boundary-value problems for the generalized multi-term time-fractional diffusion equation. J. Math. Anal. Appl. 374(2), 538–548 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Liu, F., Meerschaert, M.M., McGough, R.J., Zhuang, P., Liu, Q.: Numerical methods for solving the multi-term time-fractional wave-diffusion equation. Fract. Calc. Appl. Anal. 16(1), 9–25 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Shen, S., Liu, F., Chen, J., Turner, I., Anh, V.: Numerical techniques for the variable order time fractional diffusion equation. Appl. Math. Comput. 218(22), 10861–10870 (2012)

    MathSciNet  MATH  Google Scholar 

  23. Diethelm, K., Ford, N.J.: Numerical analysis for distributed-order differential equations. J. Comput. Appl. Math. 225(1), 96–104 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kopteva, N.: Error analysis for time-fractional semilinear parabolic equations using upper and lower solutions. SIAM J. Numer. Anal. 58(4), 2212–2234 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  25. Ferreira, R.A.: A discrete fractional Gronwall inequality. Proceedings of the American Mathematical Society, pp. 1605–1612

  26. Liao, H., McLean, W., Zhang, J.: A discrete Gronwall inequality with applications to numerical schemes for subdiffusion problems. SIAM J. Numer. Anal. 57(1), 218–237 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kopteva, N., Meng, X.: Error analysis for a fractional-derivative parabolic problem on quasi-graded Meshes using barrier functions. SIAM J. Numer. Anal. 58(2), 1217–1238 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  28. Feng, L., Liu, F., Turner, I., Zheng, L.: Novel numerical analysis of multi-term time fractional viscoelastic non-Newtonian fluid models for simulating unsteady MHD Couette flow of a generalized Oldroyd-B fluid. Fract. Calc. Appl. Anal. 21(4), 1073–1103 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  29. Gorenflo, R., Kilbas, A.A., Mainardi, F., Rogosin, S.V.: Mittag-Leffler functions, related topics and applications. Springer, Heidelberg (2014)

  30. Abramowitz, M., Stegun, I.A. (eds.): Handbook of mathematical functions with formulas, graphs, and mathematical tables, Reprint edn. National Bureau of Standards Applied Mathematics Series, vol. 55. Martino Publishing, Mansfield Centre, CT (2014)

  31. Diethelm, K.: The analysis of fractional differential equations, vol. 2004 (2010)

  32. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J. (eds.): Theory and applications of fractional differential equations vol. 204, pp. 279–346 (2006)

  33. Huang, C., Liu, X., Meng, X., Stynes, M.: Error analysis of a finite difference method on graded meshes for a multiterm time-fractional initial-boundary value problem. Comput. Methods Appl. Math. 20(4), 815–825 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  34. Xie, Y., Yin, D., Mei, L.: Finite difference scheme on graded meshes to the time-fractional neutron diffusion equation with non-smooth solutions. Appl. Math. Comput. 435, 127474 (2022)

    MathSciNet  MATH  Google Scholar 

  35. Chen, H., Stynes, M.: Blow-up of error estimates in time-fractional initial-boundary value problems. IMA J. Numer. Anal. 41(2), 974–997 (2020)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the associate editor and two anonymous referees for their helpful comments.

Funding

The project is supported by the National Natural Science Foundation of China No.12171385.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liquan Mei.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Communicated by: Martin Stynes

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, D., Xie, Y. & Mei, L. The stability and convergence analysis of finite difference methods for the fractional neutron diffusion equation. Adv Comput Math 49, 72 (2023). https://doi.org/10.1007/s10444-023-10070-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10444-023-10070-y

Keywords

Mathematics Subject Classification (2010)

Navigation